agent-party
MCP Serveragent-partypublic

clubhouse

提供与 Confluent Kafka 的集成,支持 JSON 和 Avro 序列化,包含模块化架构和测试套件。

Repository Info

0
Stars
0
Forks
0
Watchers
0
Issues
Python
Language
Other
License

About This Server

提供与 Confluent Kafka 的集成,支持 JSON 和 Avro 序列化,包含模块化架构和测试套件。

Model Context Protocol (MCP) - This server can be integrated with AI applications to provide additional context and capabilities, enabling enhanced AI interactions and functionality.

Documentation

Clubhouse - Confluent Kafka Integration

This package provides a robust integration with Confluent Kafka, offering utilities for producing and consuming Kafka messages with support for JSON and Avro serialization using Schema Registry.

Features

  • Confluent Kafka integration with a clean, modular architecture
  • Schema Registry integration with Avro serialization support
  • Type-safe interfaces with Protocol definitions
  • Comprehensive test suite following Test-Driven Development principles
  • Docker-based local development environment

Installation

Development Environment

# Create a virtual environment
python3 -m venv venv

# Activate the virtual environment
source venv/bin/activate

# Install the package in development mode with development dependencies
pip install -e ".[dev]"

Usage

Running the Kafka Demo

To run the Kafka demo with Docker:

# Start the Kafka environment
./run_kafka_demo.sh

# To stop the environment
./run_kafka_demo.sh stop

Running Examples

# JSON serialization example
python -m mcp_demo.examples.kafka_example json_producer
python -m mcp_demo.examples.kafka_example json_consumer

# Avro serialization example with Schema Registry
python -m mcp_demo.examples.kafka_example avro_producer
python -m mcp_demo.examples.kafka_example avro_consumer

Running the main application

python -m mcp_demo

Testing

# Run all tests
pytest

# Run with coverage report
pytest --cov=mcp_demo tests/

Project Structure

mcp_demo/
├── core/            # Core components and utilities
├── services/        # Service implementations
├── schemas/         # Avro schema definitions
├── models/          # Data models and business logic
├── examples/        # Example scripts
├── __main__.py      # Application entry point
├── tests/           # Test suite
    ├── unit/        # Unit tests
    ├── integration/ # Integration tests
    ├── conftest.py  # Test fixtures and configuration

Configuration

The Clubhouse uses a modular, type-safe configuration system based on Pydantic models. You can configure the application using environment variables:

Environment VariableDefault ValueDescription
MCP_HOST127.0.0.1Host to bind the MCP server to
MCP_PORT8000Port to bind the MCP server to
MCP_LOG_LEVELinfoLogging level (debug, info, warning, error, critical)
KAFKA_BOOTSTRAP_SERVERSlocalhost:9092Comma-separated list of Kafka broker addresses
KAFKA_TOPIC_PREFIX""Prefix to add to all topics
SCHEMA_REGISTRY_URLhttp://localhost:8081URL of the Schema Registry server

For more details, see the Configuration System Documentation.

License

MIT

Quick Start

1

Clone the repository

git clone https://github.com/agent-party/clubhouse
2

Install dependencies

cd clubhouse
npm install
3

Follow the documentation

Check the repository's README.md file for specific installation and usage instructions.

Repository Details

Owneragent-party
Repoclubhouse
LanguagePython
LicenseOther
Last fetched8/10/2025

Recommended MCP Servers

💬

Discord MCP

Enable AI assistants to seamlessly interact with Discord servers, channels, and messages.

integrationsdiscordchat
🔗

Knit MCP

Connect AI agents to 200+ SaaS applications and automate workflows.

integrationsautomationsaas
🕷️

Apify MCP Server

Deploy and interact with Apify actors for web scraping and data extraction.

apifycrawlerdata
🌐

BrowserStack MCP

BrowserStack MCP Server for automated testing across multiple browsers.

testingqabrowsers

Zapier MCP

A Zapier server that provides automation capabilities for various apps.

zapierautomation