
clubhouse
提供与 Confluent Kafka 的集成,支持 JSON 和 Avro 序列化,包含模块化架构和测试套件。
Repository Info
About This Server
提供与 Confluent Kafka 的集成,支持 JSON 和 Avro 序列化,包含模块化架构和测试套件。
Model Context Protocol (MCP) - This server can be integrated with AI applications to provide additional context and capabilities, enabling enhanced AI interactions and functionality.
Documentation
Clubhouse - Confluent Kafka Integration
This package provides a robust integration with Confluent Kafka, offering utilities for producing and consuming Kafka messages with support for JSON and Avro serialization using Schema Registry.
Features
- Confluent Kafka integration with a clean, modular architecture
- Schema Registry integration with Avro serialization support
- Type-safe interfaces with Protocol definitions
- Comprehensive test suite following Test-Driven Development principles
- Docker-based local development environment
Installation
Development Environment
# Create a virtual environment
python3 -m venv venv
# Activate the virtual environment
source venv/bin/activate
# Install the package in development mode with development dependencies
pip install -e ".[dev]"
Usage
Running the Kafka Demo
To run the Kafka demo with Docker:
# Start the Kafka environment
./run_kafka_demo.sh
# To stop the environment
./run_kafka_demo.sh stop
Running Examples
# JSON serialization example
python -m mcp_demo.examples.kafka_example json_producer
python -m mcp_demo.examples.kafka_example json_consumer
# Avro serialization example with Schema Registry
python -m mcp_demo.examples.kafka_example avro_producer
python -m mcp_demo.examples.kafka_example avro_consumer
Running the main application
python -m mcp_demo
Testing
# Run all tests
pytest
# Run with coverage report
pytest --cov=mcp_demo tests/
Project Structure
mcp_demo/
├── core/ # Core components and utilities
├── services/ # Service implementations
├── schemas/ # Avro schema definitions
├── models/ # Data models and business logic
├── examples/ # Example scripts
├── __main__.py # Application entry point
├── tests/ # Test suite
├── unit/ # Unit tests
├── integration/ # Integration tests
├── conftest.py # Test fixtures and configuration
Configuration
The Clubhouse uses a modular, type-safe configuration system based on Pydantic models. You can configure the application using environment variables:
| Environment Variable | Default Value | Description |
|---|---|---|
MCP_HOST | 127.0.0.1 | Host to bind the MCP server to |
MCP_PORT | 8000 | Port to bind the MCP server to |
MCP_LOG_LEVEL | info | Logging level (debug, info, warning, error, critical) |
KAFKA_BOOTSTRAP_SERVERS | localhost:9092 | Comma-separated list of Kafka broker addresses |
KAFKA_TOPIC_PREFIX | "" | Prefix to add to all topics |
SCHEMA_REGISTRY_URL | http://localhost:8081 | URL of the Schema Registry server |
For more details, see the Configuration System Documentation.
License
MIT
Quick Start
Clone the repository
git clone https://github.com/agent-party/clubhouseInstall dependencies
cd clubhouse
npm installFollow the documentation
Check the repository's README.md file for specific installation and usage instructions.
Repository Details
Recommended MCP Servers
Discord MCP
Enable AI assistants to seamlessly interact with Discord servers, channels, and messages.
Knit MCP
Connect AI agents to 200+ SaaS applications and automate workflows.
Apify MCP Server
Deploy and interact with Apify actors for web scraping and data extraction.
BrowserStack MCP
BrowserStack MCP Server for automated testing across multiple browsers.
Zapier MCP
A Zapier server that provides automation capabilities for various apps.