
mcp kit
一个由 Aintent.ai 提供的 Model Context Protocol (MCP) 强大 SDK 工具包。
Repository Info
About This Server
一个由 Aintent.ai 提供的 Model Context Protocol (MCP) 强大 SDK 工具包。
Model Context Protocol (MCP) - This server can be integrated with AI applications to provide additional context and capabilities, enabling enhanced AI interactions and functionality.
Documentation
Intent MCP Kit 🚀
A powerful SDK for Model Context Protocol (MCP) by Aintent.ai, an Axes Labs company.
Features • Quick Start • Installation • Usage • Widgets • API • Examples • Documentation
Features ✨
- 🎯 Intent Processing: Advanced natural language understanding and intent classification
- 🔄 Workflow Generation: Automated workflow creation from natural language inputs
- 🎨 Interactive Widgets: Ready-to-use UI components for chat and flow visualization
- 🛠️ Extensible Architecture: Easy to customize and extend with your own components
- 📦 TypeScript Ready: Full TypeScript support with comprehensive type definitions
- 🔌 Plugin System: Extensible plugin architecture for custom integrations
- 🎭 Theme Support: Light and dark themes out of the box
- 📱 Responsive Design: Works seamlessly on desktop and mobile
Quick Start 🚀
import { MCPClient, ChatWidget } from '@aintent/mcp-kit';
// Initialize the client
const client = new MCPClient({
apiKey: 'your-api-key'
});
// Create a chat widget
const chat = new ChatWidget('#chat-container', client, {
theme: 'light',
height: '500px'
});
// Process intents and generate workflows
chat.on('message', async (message) => {
const intent = await client.processIntent(message);
const flow = await client.generateWorkflow(intent);
await client.executeWorkflow(flow);
});
Installation 📦
# Using npm
npm install @aintent/mcp-kit
# Using yarn
yarn add @aintent/mcp-kit
# Using pnpm
pnpm add @aintent/mcp-kit
Usage 💡
Core Client
import { MCPClient } from '@aintent/mcp-kit';
const client = new MCPClient({
apiKey: 'your-api-key',
options: {
timeout: 5000,
retries: 3
}
});
// Process an intent
const intent = await client.processIntent('Deploy the application to production');
// Generate a workflow
const flow = await client.generateWorkflow(intent);
// Execute the workflow
const result = await client.executeWorkflow(flow);
Interactive Chat
import { ChatWidget } from '@aintent/mcp-kit';
const chat = new ChatWidget('#chat', client, {
theme: 'dark',
height: '600px',
placeholder: 'What would you like to do?',
maxMessages: 100,
autoScroll: true
});
// Listen for events
chat.on('message', (message) => {
console.log('New message:', message);
});
Flow Visualization
import { FlowViewerWidget } from '@aintent/mcp-kit';
const viewer = new FlowViewerWidget('#viewer', flow, {
height: '800px',
theme: 'light',
zoom: {
min: 0.5,
max: 3,
step: 0.1
}
});
// Update flow data
viewer.updateFlow(newFlow);
Widgets 🎨
The SDK includes ready-to-use UI components:
- ChatWidget: Interactive chat interface for natural language interactions
- FlowViewerWidget: Visual workflow representation with zoom and pan capabilities
- Custom Widgets: Extend
MCPWidgetto create your own components
Learn more about widgets →
API Reference 📚
MCPClient
processIntent(input: string): Promise<DeepIntent>generateWorkflow(intent: DeepIntent): Promise<DeepFlow>executeWorkflow(flow: DeepFlow): Promise<WorkflowResult>
Widgets
ChatWidget: DocumentationFlowViewerWidget: DocumentationMCPWidget: Base Class Documentation
Full API Documentation →
Examples 🎮
Basic Intent Processing
const result = await client.processIntent('Scale the web service to 5 replicas');
console.log(result.confidence); // 0.95
console.log(result.action); // { type: 'scale', target: 'web-service', replicas: 5 }
Workflow Generation
const workflow = await client.generateWorkflow({
action: 'deploy',
target: 'web-app',
environment: 'production'
});
console.log(workflow.steps); // Array of workflow steps
console.log(workflow.resources); // Required resources
More Examples →
Documentation 📖
- Getting Started Guide
- Core Concepts
- Widget Documentation
- API Reference
- Examples
- Contributing Guide
Contributing 🤝
We welcome contributions! Please see our Contributing Guide for details.
- Fork the repository
- Create your feature branch
- Commit your changes
- Push to the branch
- Create a Pull Request
License 📄
This project is licensed under the MIT License - see the LICENSE file for details.
Support 💬
- 📧 Email: aby@helloaxes.com
- 🐦 Twitter: @aintent_
- 👨💻 Founder: @magicofanon
- 📝 Blog: Aintent Blog
Made with ❤️ by Aintent.ai, an Axes Labs company
Website • Documentation • GitHub
Quick Start
Clone the repository
git clone https://github.com/aintent/mcp-kitInstall dependencies
cd mcp-kit
npm installFollow the documentation
Check the repository's README.md file for specific installation and usage instructions.
Repository Details
Recommended MCP Servers
Discord MCP
Enable AI assistants to seamlessly interact with Discord servers, channels, and messages.
Knit MCP
Connect AI agents to 200+ SaaS applications and automate workflows.
Apify MCP Server
Deploy and interact with Apify actors for web scraping and data extraction.
BrowserStack MCP
BrowserStack MCP Server for automated testing across multiple browsers.
Zapier MCP
A Zapier server that provides automation capabilities for various apps.