amuslera
MCP Serveramuslerapublic

bluelabel autopilot

MCP-native agent orchestration platform. Send content via WhatsApp → Multi-agent processing → Intelligent summaries & daily digests. Built by investors, for complex workflows.

Repository Info

0
Stars
0
Forks
0
Watchers
0
Issues
Python
Language
-
License

About This Server

MCP-native agent orchestration platform. Send content via WhatsApp → Multi-agent processing → Intelligent summaries & daily digests. Built by investors, for complex workflows.

Model Context Protocol (MCP) - This server can be integrated with AI applications to provide additional context and capabilities, enabling enhanced AI interactions and functionality.

Documentation

Bluelabel Autopilot 🚀

MCP-native agent orchestration platform for intelligent document processing with real-time capabilities.

Overview

Bluelabel Autopilot is a high-performance content processing system that:

  • Processes emails with PDF attachments in real-time
  • Generates executive summaries using AI agents
  • Provides REST API with WebSocket updates
  • Features a unified workflow engine architecture
  • Achieves <3 second processing for typical documents
  • Follows Model Context Protocol (MCP) standards

🎯 Key Features

  • Unified Architecture: Single adapter for multiple workflow engines
  • Real-time Updates: WebSocket streaming of processing progress
  • High Performance: <100ms API response, <3s PDF processing
  • Zero Breaking Changes: Backward compatible with existing workflows
  • Production Ready: Full test coverage, monitoring, and error handling

Architecture

bluelabel-autopilot/
├── agents/                 # Core agent implementations
│   ├── base_agent.py      # Base class with MCP-compliant I/O
│   ├── agent_models.py    # Shared data models
│   ├── digest_agent.py    # Content digest generation
│   └── ingestion_agent.py # URL and PDF content processing
├── prompts/               # YAML prompt templates
│   └── contentmind/       # Content processing prompts
├── runner/                # CLI and execution
│   └── cli_runner.py      # Command-line interface
└── storage/               # File-based data storage
    └── knowledge/         # Processed content storage

🚀 Quick Start

Installation

# Clone the repository
git clone https://github.com/yourusername/bluelabel-autopilot.git
cd bluelabel-autopilot

# Install dependencies (Python 3.8+)
pip install -r requirements.txt

# Install API dependencies
cd apps/api
pip install -r requirements.txt
cd ../..

Running the System

  1. Start the API Server:
cd apps/api
python main.py
# API available at http://localhost:8000
# WebSocket at ws://localhost:8000/ws
# API docs at http://localhost:8000/docs
  1. Run the Demo:
python demo/email_to_summary.py
  1. Test the Integration:
# Open in browser
open http://localhost:8000/static/test.html

Usage

CLI Commands

Digest Agent

# Generate a digest from stored summaries
python runner/cli_runner.py digest --format markdown

# Add a new summary
python runner/cli_runner.py add-summary "TechCrunch Article" "AI startup raises $50M..." --url "https://example.com"

# Run digest agent with custom JSON input
python runner/cli_runner.py run digest '{"task_id": "test", "content": {"action": "generate_digest"}}'

Ingestion Agent

# Process a URL
python runner/cli_runner.py run ingestion '{
    "task_id": "test-url",
    "task_type": "url",
    "content": {
        "url": "https://example.com/sample-article"
    }
}'

# Process a PDF
python runner/cli_runner.py run ingestion '{
    "task_id": "test-pdf",
    "task_type": "pdf",
    "content": {
        "file_path": "path/to/document.pdf"
    }
}'

# Using sample input files
python runner/cli_runner.py run ingestion --input tests/sample_url_input.json
python runner/cli_runner.py run ingestion --input tests/sample_pdf_input.json

Common Options

# Specify custom storage paths
python runner/cli_runner.py run ingestion --input tests/sample_url_input.json \
    --storage-path ./custom/knowledge \
    --temp-path ./custom/temp

Python API

from agents.digest_agent import DigestAgent
from agents.ingestion_agent import IngestionAgent
from agents.base_agent import AgentInput

# Create agents
digest_agent = DigestAgent()
ingestion_agent = IngestionAgent(
    storage_path=Path("./data/knowledge"),
    temp_path=Path("./data/temp")
)

# Process URL content
url_input = AgentInput(
    task_id="url-001",
    task_type="url",
    source="api",
    content={"url": "https://example.com"}
)
url_result = await ingestion_agent.process(url_input)

# Process PDF content
pdf_input = AgentInput(
    task_id="pdf-001",
    task_type="pdf",
    source="api",
    content={"file_path": "path/to/document.pdf"}
)
pdf_result = await ingestion_agent.process(pdf_input)

# Generate digest
digest_input = AgentInput(
    task_id="digest-001",
    source="api",
    content={"action": "generate_digest", "format": "markdown"}
)
digest_result = await digest_agent.process(digest_input)

Agents

DigestAgent

Generates formatted digests from stored content summaries.

Features:

  • Multiple output formats (Markdown, HTML, JSON)
  • File-based summary storage
  • Chronological ordering
  • Source attribution

Example Output:

# Content Digest

Generated on: 2025-01-23

## Summary 1
**Source:** TechCrunch Article  
**Date:** 2025-01-23T10:30:00  
AI startup raises $50M for revolutionary content processing...

Read more

IngestionAgent

Processes content from URLs and PDFs.

Features:

  • URL content extraction
  • PDF text extraction
  • Metadata extraction
  • Content validation
  • File-based storage

Example Output:

Processing Results:
------------------
Task ID: test-url
Status: success
Duration: 1234ms

Content Details:
Content ID: url_abc123
Content Type: url
Content Length: 12345 characters

Metadata:
title: Sample Article
author: John Doe
date: 2025-01-23

Prompt Templates

The prompts/contentmind/ directory contains YAML templates for:

  • summarization.yaml - General content summarization
  • event_summary.yaml - Meeting and event summaries
  • technical_analysis.yaml - Technical document analysis

Templates use Jinja2 syntax and can be customized for different use cases.

Development

Adding New Agents

  1. Create a new file in agents/
  2. Inherit from BaseAgent
  3. Implement the process() method
  4. Add to CLI runner registry
from agents.base_agent import BaseAgent, AgentInput, AgentOutput

class MyAgent(BaseAgent):
    agent_id = "my-agent"
    
    async def process(self, input_data: AgentInput) -> AgentOutput:
        # Your implementation here
        return AgentOutput(
            task_id=input_data.task_id,
            status="completed",
            result="Result"
        )

Running Tests

# Run all tests
pytest

# Run with coverage
pytest --cov=agents --cov=runner

Migration from AIOS-V2

This repository represents a clean extraction of core components from the legacy AIOS-V2 system:

Key Changes:

  • Removed PostgreSQL dependencies
  • Simplified agent architecture
  • Eliminated complex abstractions
  • File-based storage instead of database
  • MCP-compliant input/output models
  • Modernized Python async/await patterns

Preserved Components:

  • Core agent logic
  • Prompt templates (simplified)
  • Content processing workflows

Contributing

  1. Fork the repository
  2. Create a feature branch (git checkout -b feature/amazing-feature)
  3. Commit your changes (git commit -m 'Add amazing feature')
  4. Push to the branch (git push origin feature/amazing-feature)
  5. Open a Pull Request

License

This project is licensed under the MIT License - see the LICENSE file for details.

Acknowledgments

  • Original AIOS-V2 team for the foundational concepts
  • Model Context Protocol (MCP) for standardization guidelines
  • The agent-comms-mvp project for architectural patterns

Quick Start

1

Clone the repository

git clone https://github.com/amuslera/bluelabel-autopilot
2

Install dependencies

cd bluelabel-autopilot
npm install
3

Follow the documentation

Check the repository's README.md file for specific installation and usage instructions.

Repository Details

Owneramuslera
Repobluelabel-autopilot
LanguagePython
License-
Last fetched8/10/2025

Recommended MCP Servers

💬

Discord MCP

Enable AI assistants to seamlessly interact with Discord servers, channels, and messages.

integrationsdiscordchat
🔗

Knit MCP

Connect AI agents to 200+ SaaS applications and automate workflows.

integrationsautomationsaas
🕷️

Apify MCP Server

Deploy and interact with Apify actors for web scraping and data extraction.

apifycrawlerdata
🌐

BrowserStack MCP

BrowserStack MCP Server for automated testing across multiple browsers.

testingqabrowsers

Zapier MCP

A Zapier server that provides automation capabilities for various apps.

zapierautomation