
python ai solution
A repository for Python AI solutions including MCP server and client implementation
Repository Info
About This Server
A repository for Python AI solutions including MCP server and client implementation
Model Context Protocol (MCP) - This server can be integrated with AI applications to provide additional context and capabilities, enabling enhanced AI interactions and functionality.
Documentation
Python AI Solution
A repository for Python AI solutions including MCP (Message Coordination Protocol) server and client implementation.
MCP Server and Client Setup
This guide provides instructions on how to set up and run both the MCP server and client components.
Prerequisites
- Python 3.8 or higher
- pip (Python package installer)
- Git
Installation
- Clone this repository:
git clone https://github.com/ankit08anand/python-ai-solution.git
cd python-ai-solution
- Create and activate a virtual environment (recommended):
# For Windows
python -m venv venv
venv\Scripts\activate
# For macOS/Linux
python3 -m venv venv
source venv/bin/activate
- Install dependencies:
pip install -r requirements.txt
Running the MCP Server
The MCP server handles requests from clients and coordinates message passing between components.
# Start the MCP server
python mcp_server.py --host 127.0.0.1 --port 8000
Server Configuration Options
--host: Host address to bind the server (default: 127.0.0.1)--port: Port number to use (default: 8000)--debug: Enable debug mode (default: False)--max-connections: Maximum number of client connections (default: 100)
Running the MCP Client
The MCP client connects to the server and sends/receives messages.
# Start a basic MCP client
python mcp_client.py --server 127.0.0.1:8000
Client Configuration Options
--server: Server address in format host:port (default: 127.0.0.1:8000)--client-id: Custom client identifier (default: auto-generated)--timeout: Connection timeout in seconds (default: 30)--retry: Number of connection retry attempts (default: 3)
Advanced Usage
Secure Connections
To enable TLS/SSL for secure communications:
# Server with TLS
python mcp_server.py --host 127.0.0.1 --port 8443 --cert ./certs/server.crt --key ./certs/server.key
# Client with TLS
python mcp_client.py --server 127.0.0.1:8443 --ca-cert ./certs/ca.crt
Custom Message Handlers
Create custom message handlers by extending the base handler classes:
from mcp_client import BaseMCPHandler
class CustomHandler(BaseMCPHandler):
def on_message(self, message):
# Custom message processing logic
print(f"Received: {message}")
# Process the message...
return response
Troubleshooting
Common Issues
- Connection Refused: Ensure the server is running and the correct host/port is specified.
- Authentication Failed: Verify your credentials if authentication is enabled.
- High Latency: Check network conditions and server load.
Logging
Enable detailed logging for debugging:
# Server with verbose logging
python mcp_server.py --log-level DEBUG
# Client with verbose logging
python mcp_client.py --log-level DEBUG
Contributing
Contributions are welcome! Please feel free to submit a Pull Request.
License
This project is licensed under the MIT License - see the LICENSE file for details.
Quick Start
Clone the repository
git clone https://github.com/ankit08anand/python-ai-solutionInstall dependencies
cd python-ai-solution
npm installFollow the documentation
Check the repository's README.md file for specific installation and usage instructions.
Repository Details
Recommended MCP Servers
Discord MCP
Enable AI assistants to seamlessly interact with Discord servers, channels, and messages.
Knit MCP
Connect AI agents to 200+ SaaS applications and automate workflows.
Apify MCP Server
Deploy and interact with Apify actors for web scraping and data extraction.
BrowserStack MCP
BrowserStack MCP Server for automated testing across multiple browsers.
Zapier MCP
A Zapier server that provides automation capabilities for various apps.