artsnoob
MCP Serverartsnoobpublic

googleadkagent

使用 Google ADK 创建具备文件操作、网络搜索等功能的流式 AI 代理。

Repository Info

2
Stars
0
Forks
2
Watchers
1
Issues
Python
Language
-
License

About This Server

使用 Google ADK 创建具备文件操作、网络搜索等功能的流式 AI 代理。

Model Context Protocol (MCP) - This server can be integrated with AI applications to provide additional context and capabilities, enabling enhanced AI interactions and functionality.

Documentation

Google ADK Streaming Agent

Description

This project demonstrates the use of the Google Agent Development Kit (ADK) to create a streaming AI agent with various capabilities, including filesystem operations, web search, code execution, content scraping, and fetching web content. The agent leverages multiple Model Context Protocol (MCP) servers and Google Search to perform these operations through natural language commands. The agent is designed to be run with adk web for a web-based interface.

Features

  • Web-based interface via adk web.
  • Integration with Google ADK's LlmAgent.
  • Utilizes local MCP servers for filesystem operations, code execution, content scraping, and fetching web content.
  • Integrates with Google Search.
  • Uses the gemini-2.5-flash-preview-04-17 model for streaming responses.
  • Supports python-dotenv for environment variable management.
  • Conversation Export: Save entire conversation history (including tool calls) to markdown files for troubleshooting.

Installation

Prerequisites

  • Python 3.8+
  • npm or npx (for the MCP servers)
  • Google ADK (pip install google-generativeai-toolkit)

Steps

  1. Install Python dependencies:

    pip install -r config/requirements.txt
    
  2. Set up environment variables: Create a .env file in the app/ directory and add your Google API key:

    GOOGLE_API_KEY=YOUR_ACTUAL_API_KEY_HERE
    GOOGLE_GENAI_USE_VERTEXAI=FALSE # Set to TRUE if using Vertex AI
    
  3. MCP Server Setup: This project relies on several local MCP servers. Ensure you have the necessary servers installed and running or configured to be started by the agent. The agent is configured to start the following servers using npx or node:

    • @modelcontextprotocol/server-filesystem
    • mcp_code_executor (requires building from source)
    • contentscraper-mcp-server (requires building from source)
    • fetch-server (requires building from source)

Usage

Running the Agent

Start the interactive command-line agent:

python main.py

With specific model configuration:

python main.py --llm_provider gemini --model_name gemini-2.5-flash-preview-05-20
python main.py --llm_provider openrouter --model_name openrouter/anthropic/claude-3-haiku

Interactive Commands

  • Type your requests normally to interact with the agent
  • exit - Quit the agent
  • save - Export the current conversation to a markdown file in data/conversation_exports/

Conversation Export

The agent automatically tracks all interactions including:

  • User messages
  • Agent responses
  • Tool calls with arguments and results
  • Status messages and errors
  • Metadata like web search queries and grounding sources

Exported conversations are saved as markdown files with timestamps, making them ideal for:

  • Troubleshooting and debugging
  • Sharing agent interactions
  • Reviewing agent behavior
  • Documentation

Project Structure

  • main.py: Entry point for the application
  • src/: Main source code directory
    • core/: Core system components (mcp_agent.py, token_manager.py, error_recovery_system.py)
    • agents/: Agent configuration (agent_config.py)
    • mcp/: MCP server management (mcp_server_init.py)
    • processors/: Event and data processing (event_processor.py, conversation_logger.py)
    • utils/: Utilities and formatters (mcp_agent_utils.py, telegram_formatter.py)
  • data/: Data and working files
    • agent_files/: Agent working directory
    • conversation_exports/: Exported conversation logs
  • docs/: Documentation files
  • config/: Configuration files (CLAUDE.md, requirements.txt)
    • agent_files/: Directory containing files used by the agent.
    • .env: Environment variables (e.g., API keys).
  • README.md: Project README file.
  • requirements.txt: Lists Python dependencies.

Quick Start

1

Clone the repository

git clone https://github.com/artsnoob/googleadkagent
2

Install dependencies

cd googleadkagent
npm install
3

Follow the documentation

Check the repository's README.md file for specific installation and usage instructions.

Repository Details

Ownerartsnoob
Repogoogleadkagent
LanguagePython
License-
Last fetched8/10/2025

Recommended MCP Servers

💬

Discord MCP

Enable AI assistants to seamlessly interact with Discord servers, channels, and messages.

integrationsdiscordchat
🔗

Knit MCP

Connect AI agents to 200+ SaaS applications and automate workflows.

integrationsautomationsaas
🕷️

Apify MCP Server

Deploy and interact with Apify actors for web scraping and data extraction.

apifycrawlerdata
🌐

BrowserStack MCP

BrowserStack MCP Server for automated testing across multiple browsers.

testingqabrowsers

Zapier MCP

A Zapier server that provides automation capabilities for various apps.

zapierautomation