
sample mcp server s3
未知
Repository Info
About This Server
未知
Model Context Protocol (MCP) - This server can be integrated with AI applications to provide additional context and capabilities, enabling enhanced AI interactions and functionality.
Documentation
Sample S3 Model Context Protocol Server
An MCP server implementation for retrieving data such as PDF's from S3.
Features
Resources
Expose AWS S3 Data through Resources. (think of these sort of like GET endpoints; they are used to load information into the LLM's context). Currently only PDF documents supported and limited to 1000 objects.
Tools
- ListBuckets
- Returns a list of all buckets owned by the authenticated sender of the request
- ListObjectsV2
- Returns some or all (up to 1,000) of the objects in a bucket with each request
- GetObject
- Retrieves an object from Amazon S3. In the GetObject request, specify the full key name for the object. General purpose buckets - Both the virtual-hosted-style requests and the path-style requests are supported
Configuration
Setting up AWS Credentials
- Obtain AWS access key ID, secret access key, and region from the AWS Management Console and configure credentials files using Default profile as shown here
- Ensure these credentials have appropriate permission READ/WRITE permissions for S3.
Usage with Claude Desktop
Claude Desktop
On MacOS: ~/Library/Application\ Support/Claude/claude_desktop_config.json
On Windows: %APPDATA%/Claude/claude_desktop_config.json
Development/Unpublished Servers Configuration
{
"mcpServers": {
"s3-mcp-server": {
"command": "uv",
"args": [
"--directory",
"/Users/user/generative_ai/model_context_protocol/s3-mcp-server",
"run",
"s3-mcp-server"
]
}
}
}
Published Servers Configuration
{
"mcpServers": {
"s3-mcp-server": {
"command": "uvx",
"args": [
"s3-mcp-server"
]
}
}
}
Development
Building and Publishing
To prepare the package for distribution:
- Sync dependencies and update lockfile:
uv sync
- Build package distributions:
uv build
This will create source and wheel distributions in the dist/ directory.
- Publish to PyPI:
uv publish
Note: You'll need to set PyPI credentials via environment variables or command flags:
- Token:
--tokenorUV_PUBLISH_TOKEN - Or username/password:
--username/UV_PUBLISH_USERNAMEand--password/UV_PUBLISH_PASSWORD
Debugging
Since MCP servers run over stdio, debugging can be challenging. For the best debugging experience, we strongly recommend using the MCP Inspector.
You can launch the MCP Inspector via npm with this command:
npx @modelcontextprotocol/inspector uv --directory /Users/user/generative_ai/model_context_protocol/s3-mcp-server run s3-mcp-server
Upon launching, the Inspector will display a URL that you can access in your browser to begin debugging.
Security
See CONTRIBUTING for more information.
License
This library is licensed under the MIT-0 License. See the LICENSE file.
Quick Start
Clone the repository
git clone https://github.com/aws-samples/sample-mcp-server-s3Install dependencies
cd sample-mcp-server-s3
npm installFollow the documentation
Check the repository's README.md file for specific installation and usage instructions.
Repository Details
Recommended MCP Servers
Discord MCP
Enable AI assistants to seamlessly interact with Discord servers, channels, and messages.
Knit MCP
Connect AI agents to 200+ SaaS applications and automate workflows.
Apify MCP Server
Deploy and interact with Apify actors for web scraping and data extraction.
BrowserStack MCP
BrowserStack MCP Server for automated testing across multiple browsers.
Zapier MCP
A Zapier server that provides automation capabilities for various apps.