
mcp llm bridge
MCP implementation that enables communication between MCP servers and OpenAI-compatible LLMs
Repository Info
About This Server
MCP implementation that enables communication between MCP servers and OpenAI-compatible LLMs
Model Context Protocol (MCP) - This server can be integrated with AI applications to provide additional context and capabilities, enabling enhanced AI interactions and functionality.
Documentation
MCP LLM Bridge
A bridge connecting Model Context Protocol (MCP) servers to OpenAI-compatible LLMs. Primary support for OpenAI API, with additional compatibility for local endpoints that implement the OpenAI API specification.
The implementation provides a bidirectional protocol translation layer between MCP and OpenAI's function-calling interface. It converts MCP tool specifications into OpenAI function schemas and handles the mapping of function invocations back to MCP tool executions. This enables any OpenAI-compatible language model to leverage MCP-compliant tools through a standardized interface, whether using cloud-based models or local implementations like Ollama.
Read more about MCP by Anthropic here:
- Resources
- Prompts
- Tools
- Sampling
Demo:
!MCP LLM Bridge Demo
Quick Start
# Install
curl -LsSf https://astral.sh/uv/install.sh | sh
git clone https://github.com/bartolli/mcp-llm-bridge.git
cd mcp-llm-bridge
uv venv
source .venv/bin/activate
uv pip install -e .
# Create test database
python -m mcp_llm_bridge.create_test_db
Configuration
OpenAI (Primary)
Create .env:
OPENAI_API_KEY=your_key
OPENAI_MODEL=gpt-4o # or any other OpenAI model that supports tools
Note: reactivate the environment if needed to use the keys in .env: source .venv/bin/activate
Then configure the bridge in src/mcp_llm_bridge/main.py
config = BridgeConfig(
mcp_server_params=StdioServerParameters(
command="uvx",
args=["mcp-server-sqlite", "--db-path", "test.db"],
env=None
),
llm_config=LLMConfig(
api_key=os.getenv("OPENAI_API_KEY"),
model=os.getenv("OPENAI_MODEL", "gpt-4o"),
base_url=None
)
)
Additional Endpoint Support
The bridge also works with any endpoint implementing the OpenAI API specification:
Ollama
llm_config=LLMConfig(
api_key="not-needed",
model="mistral-nemo:12b-instruct-2407-q8_0",
base_url="http://localhost:11434/v1"
)
Note: After testing various models, including llama3.2:3b-instruct-fp16, I found that mistral-nemo:12b-instruct-2407-q8_0 handles complex queries more effectively.
LM Studio
llm_config=LLMConfig(
api_key="not-needed",
model="local-model",
base_url="http://localhost:1234/v1"
)
I didn't test this, but it should work.
Usage
python -m mcp_llm_bridge.main
# Try: "What are the most expensive products in the database?"
# Exit with 'quit' or Ctrl+C
Running Tests
Install the package with test dependencies:
uv pip install -e ".[test]"
Then run the tests:
python -m pytest -v tests/
License
MIT
Contributing
PRs welcome.
Quick Start
Clone the repository
git clone https://github.com/bartolli/mcp-llm-bridgeInstall dependencies
cd mcp-llm-bridge
npm installFollow the documentation
Check the repository's README.md file for specific installation and usage instructions.
Repository Details
Recommended MCP Servers
Discord MCP
Enable AI assistants to seamlessly interact with Discord servers, channels, and messages.
Knit MCP
Connect AI agents to 200+ SaaS applications and automate workflows.
Apify MCP Server
Deploy and interact with Apify actors for web scraping and data extraction.
BrowserStack MCP
BrowserStack MCP Server for automated testing across multiple browsers.
Zapier MCP
A Zapier server that provides automation capabilities for various apps.