
lingo werkzeuge
MCP and A2A Hackathon - AWS Edition - Language Learning Teaching Assistant
Repository Info
About This Server
MCP and A2A Hackathon - AWS Edition - Language Learning Teaching Assistant
Model Context Protocol (MCP) - This server can be integrated with AI applications to provide additional context and capabilities, enabling enhanced AI interactions and functionality.
Documentation
Lingo Werkzeuge
An interactive AI-powered language learning assistant demo app, showcasing integration with sponsor SDKs and best practices for project setup.
Features
- 🗣️ Interactive Language Learning - Practice conversations with an AI tutor
- 🌍 Multiple Language Support - Learn Spanish, French, and many other languages
- 🎙️ Natural Voice Synthesis - Lifelike speech using Rime AI voices
- 📚 Vocabulary Management - Save and review words you learn
- 🧠 Intelligent Tutoring - AI adapts to your learning needs
Architecture
Project file structure:
├── pyproject.toml # Project metadata and dependencies
├── README.md # This file
├── .env # Environment variables and API keys
├── src/ # Source code directory
│ ├── lingo_werkzeuge/ # Main package code
│ │ ├── __init__.py # Package initialization
│ │ ├── convolingo/ # Language learning application
│ │ │ ├── __init__.py
│ │ │ ├── __main__.py
│ │ │ ├── api/ # API clients and server
│ │ │ ├── cli/ # Command-line interface
│ │ │ ├── tools/ # Language learning tools
│ │ │ └── utils/ # Utility functions
│ │ └── vapi/ # Vapi integration module
│ │ ├── __init__.py
│ │ ├── cli.py # Command-line interface for testing
│ │ └── test.py # Testing utilities for Vapi+Rime AI
│ ├── vapi/ # Direct-access test utilities
│ │ ├── __init__.py
│ │ └── test.py
│ └── vapi_test_cmd.py # Command-line script for testing
├── docs # Documentation
├── hackathon # Hackathon-specific information
└── sponsors # Sponsor SDK documentation
Installation
# Clone the repository
git clone https://github.com/cmagganas/lingo-werkzeuge.git
cd lingo-werkzeuge
# Create and activate a virtual environment
uv venv .venv
source .venv/bin/activate
# Install dependencies
uv add vapi_python flask python-dotenv requests pydantic
Environment Variables
Create a .env file with your API keys:
# Vapi API credentials
VAPI_API_KEY=your_vapi_api_key_here
# Voice configuration (using Rime AI)
VAPI_VOICE_PROVIDER=rime-ai
VAPI_VOICE_ID=samantha # Options: samantha, elena, maya, ally, nicholas, tyler
# Other API keys
OPENAI_API_KEY=your_openai_api_key_here
ARCADE_API_KEY=your_arcade_api_key_here
Usage
Testing Vapi with Rime AI Voices
You can test the Vapi integration with Rime AI voices using one of the following commands:
# List available Rime AI voices
python -m lingo_werkzeuge.vapi.cli --list-voices
# Test with the default voice (samantha)
python -m lingo_werkzeuge.vapi.cli
# Test with a specific voice
python -m lingo_werkzeuge.vapi.cli --voice elena
# Test with a custom message and longer wait time
python -m lingo_werkzeuge.vapi.cli --voice nicholas --message "Tell me about language learning" --wait 15
Running the Language Learning Application
The full language learning application can be run with:
# Start the main application
python -m lingo_werkzeuge
# Start with a specific language
python -m lingo_werkzeuge --language French
# Start with debug logging
python -m lingo_werkzeuge --debug
Available Rime AI Voices
The application supports multiple Rime AI voices:
samantha- Female, clear and professional (default)elena- Female, warm and friendlynicholas- Male, authoritative and cleartyler- Male, conversational and friendlymaya- Female, younger sounding voiceally- Female, energetic and upbeat
Project Structure Overview
Main Components
-
ConvoLingo - The core language learning application
- Interactive CLI for language practice
- Vocabulary management tools
- Webhook server for API integrations
-
Vapi Integration - Voice synthesis using Vapi and Rime AI
- Testing utilities and CLI for Vapi
- Voice selection and configuration
- Speech synthesis with natural-sounding voices
Contributing
- Fork the repository
- Create your feature branch (
git checkout -b feature/amazing-feature) - Commit your changes (
git commit -m 'Add some amazing feature') - Push to the branch (
git push origin feature/amazing-feature) - Open a Pull Request
License
This project is licensed under the MIT License - see the LICENSE file for details.
Acknowledgments
- Vapi - For their voice conversation API
- Rime AI - For their natural-sounding voices
- Arcade - For their AI SDK
- Other sponsors of the MCP hackathon
Quick Start
Clone the repository
git clone https://github.com/cmagganas/lingo-werkzeugeInstall dependencies
cd lingo-werkzeuge
npm installFollow the documentation
Check the repository's README.md file for specific installation and usage instructions.
Repository Details
Recommended MCP Servers
Discord MCP
Enable AI assistants to seamlessly interact with Discord servers, channels, and messages.
Knit MCP
Connect AI agents to 200+ SaaS applications and automate workflows.
Apify MCP Server
Deploy and interact with Apify actors for web scraping and data extraction.
BrowserStack MCP
BrowserStack MCP Server for automated testing across multiple browsers.
Zapier MCP
A Zapier server that provides automation capabilities for various apps.