collabnix
MCP Servercollabnixpublic

kubernetes ai landscape

A comprehensive collection of AI/ML tools, frameworks, and resources in the Kubernetes ecosystem

Repository Info

11
Stars
1
Forks
11
Watchers
0
Issues
TypeScript
Language
MIT License
License

About This Server

A comprehensive collection of AI/ML tools, frameworks, and resources in the Kubernetes ecosystem

Model Context Protocol (MCP) - This server can be integrated with AI applications to provide additional context and capabilities, enabling enhanced AI interactions and functionality.

Documentation

Kubernetes AI Landscape

A comprehensive collection of AI/ML tools, frameworks, and resources in the Kubernetes ecosystem for building, deploying, and managing machine learning workloads at scale.

GitHub stars GitHub forks GitHub issues License

Table of Contents

  • Overview
  • MLOps Platforms
  • Model Serving & Inference
  • Workflow Orchestration
  • Training & Experimentation
  • Data Processing & Pipelines
  • Monitoring & Observability
  • GPU & Resource Management
  • Development & Notebooks
  • ? MCP Servers for Kubernetes
  • Security & Compliance
  • Commercial & Managed Solutions
  • Getting Started
  • Contributing
  • Community

Overview

Kubernetes has become the de facto standard for orchestrating AI/ML workloads, providing scalability, portability, and robust resource management for machine learning operations. This repository catalogs the essential tools and frameworks that power the Kubernetes AI ecosystem.

Why Kubernetes for AI/ML?

  • Scalability: Dynamic scaling of ML workloads based on demand
  • Portability: Deploy anywhere Kubernetes runs (cloud, on-premise, edge)
  • Resource Management: Efficient GPU/CPU allocation and optimization
  • Containerization: Consistent environments from development to production
  • Automation: GitOps and CI/CD integration for ML pipelines

MLOps Platforms

Comprehensive platforms for end-to-end machine learning lifecycle management.

ToolDescriptionCategoryLicenseGitHub StarsKey Features
KubeflowComplete ML platform for Kubernetes with pipelines, notebooks, and model servingEnd-to-End MLOpsApache 2.014k+Pipelines, Notebooks, Katib, KServe, Multi-framework support
MLflowOpen source platform for ML lifecycle managementExperiment TrackingApache 2.018k+Tracking, Projects, Models, Registry, Deployment
ZenMLExtensible open-source MLOps framework for reproducible pipelinesMLOps FrameworkApache 2.04k+Pipeline orchestration, Model deployment, Stack management
MetaflowHuman-friendly library for data science projectsData Science PlatformApache 2.08k+Versioning, Scaling, Deployment, Human-centric design

Model Serving & Inference

Tools for deploying and serving ML models in production environments.

ToolDescriptionCategoryLicenseGitHub StarsSupported Frameworks
KServeKubernetes-native serverless ML inference platformModel ServingApache 2.05.5k+TensorFlow, PyTorch, XGBoost, SKLearn, ONNX, Hugging Face
Seldon CoreML deployment platform for Kubernetes with advanced featuresModel ServingBSL 1.14k+SKLearn, XGBoost, SparkML, Custom models
Ray ServeScalable model serving library with Python-first approachModel ServingApache 2.033k+Any Python framework, PyTorch, TensorFlow, SKLearn
TensorFlow ServingProduction ML model serving system for TensorFlowModel ServingApache 2.06k+TensorFlow, TensorFlow Lite
TorchServePyTorch model serving frameworkModel ServingApache 2.04k+PyTorch, TorchScript, ONNX
Triton Inference ServerNVIDIA's inference serving softwareModel ServingBSD 3-Clause8k+TensorFlow, PyTorch, ONNX, TensorRT, Custom backends
BentoMLFramework for building ML servicesModel ServingApache 2.07k+All Python ML frameworks

Workflow Orchestration

Tools for managing and orchestrating ML pipelines and workflows.

ToolDescriptionCategoryLicenseGitHub StarsKey Capabilities
Argo WorkflowsContainer-native workflow engine for KubernetesWorkflow OrchestrationApache 2.015k+DAG workflows, Parallel execution, Artifact management
Apache AirflowPlatform for workflow orchestration and schedulingWorkflow OrchestrationApache 2.036k+Python DAGs, Rich UI, Extensive integrations
TektonCloud-native CI/CD pipeline frameworkCI/CD PipelinesApache 2.08k+Kubernetes-native, Reusable tasks, GitOps
Kubeflow PipelinesML workflow orchestration platformML PipelinesApache 2.0Part of KubeflowML-specific, Component reuse, Experiment tracking
PrefectModern workflow orchestration platformWorkflow ManagementApache 2.016k+Python-native, Dynamic workflows, Error handling

Training & Experimentation

Frameworks and tools for distributed training and hyperparameter optimization.

ToolDescriptionCategoryLicenseGitHub StarsTraining Support
KatibKubernetes-native hyperparameter tuningHyperparameter TuningApache 2.0Part of KubeflowAutoML, NAS, Multi-objective optimization
RayDistributed computing framework for MLDistributed TrainingApache 2.033k+Distributed training, Hyperparameter tuning, Reinforcement learning
HorovodDistributed deep learning training frameworkDistributed TrainingApache 2.014k+TensorFlow, PyTorch, MXNet, Multi-GPU/Multi-node
PyTorch LightningHigh-level interface for PyTorchTraining FrameworkApache 2.028k+Scalable training, Multi-GPU, TPU support
TensorFlow Extended (TFX)End-to-end ML platform for TensorFlowML PlatformApache 2.02k+Data validation, Transform, Training, Serving

Data Processing & Pipelines

Tools for data ingestion, processing, and pipeline management.

ToolDescriptionCategoryLicenseGitHub StarsData Support
Apache SparkUnified analytics engine for big data processingData ProcessingApache 2.039k+Batch, Streaming, ML, SQL, Graph processing
DaskParallel computing library for PythonData ProcessingBSD 3-Clause12k+Pandas, NumPy, Scikit-learn scaling
FlyteCloud-native workflow automation platformData OrchestrationApache 2.05k+Type-safe pipelines, Versioning, Multi-cloud
PachydermData versioning and pipelines for MLData VersioningApache 2.06k+Git-like data versioning, Pipeline automation
DVCData version control for ML projectsData VersioningApache 2.013k+Git integration, Experiment tracking, Model management

Monitoring & Observability

Tools for monitoring ML models and infrastructure performance.

ToolDescriptionCategoryLicenseGitHub StarsMonitoring Features
PrometheusMonitoring and alerting toolkitInfrastructure MonitoringApache 2.055k+Metrics collection, Alerting, Time-series DB
GrafanaObservability and monitoring platformVisualizationAGPL 3.062k+Dashboards, Alerting, Multi-datasource
TensorBoardVisualization toolkit for ML experimentsML MonitoringApache 2.0Part of TFMetrics visualization, Model graphs, Profiling
MLRunOpen MLOps platform for managing ML lifecycleMLOps MonitoringApache 2.01.4k+Experiment tracking, Model monitoring, Feature store
EvidentlyML model monitoring and data drift detectionModel MonitoringApache 2.05k+Data drift, Model performance, Interactive reports

GPU & Resource Management

Specialized tools for GPU scheduling and resource optimization.

ToolDescriptionCategoryLicenseGitHub StarsGPU Features
NVIDIA GPU OperatorGPU resource management for KubernetesGPU ManagementApache 2.01.8k+Automated GPU setup, Driver management, Monitoring
VolcanoBatch system for high-performance workloadsBatch SchedulingApache 2.04k+Gang scheduling, GPU affinity, Queue management
YunikornResource scheduler for big data and ML workloadsResource SchedulingApache 2.0400+Multi-tenant, Resource quotas, Preemption
NVIDIA Run:aiGPU orchestration platformGPU OrchestrationCommercialN/ADynamic GPU allocation, Workload management, Multi-tenancy

Development & Notebooks

Interactive development environments and notebook platforms.

ToolDescriptionCategoryLicenseGitHub StarsIDE Support
JupyterHubMulti-user notebook serverNotebook PlatformBSD 3-Clause8k+Jupyter notebooks, Multi-user, Spawners
Kubeflow NotebooksJupyter notebooks in KubernetesML NotebooksApache 2.0Part of KubeflowPre-configured images, Volume support, RBAC
Code ServerVS Code in the browserCloud IDEMIT67k+VS Code, Remote development, Extensions
KaleConvert Jupyter notebooks to Kubeflow pipelinesNotebook AutomationApache 2.0600+Notebook to pipeline, Auto-annotation, Katib integration

? MCP Servers for Kubernetes

Model Context Protocol (MCP) servers enable AI assistants to interact with Kubernetes clusters through standardized interfaces. ? View Complete MCP Servers Guide

ToolDescriptionLanguageKey Features
kubernetes-mcp-serverNative Kubernetes/OpenShift MCP serverGoCross-platform binaries, Helm support, OpenShift support
mcp-k8s-goLightweight extensible Kubernetes MCP serverGoPod logs, Events, Namespaces, Extensible architecture
k8s-multicluster-mcpMulti-cluster Kubernetes operationsPythonMulti-cluster support, Context switching

Quick Start with MCP

# Install the recommended MCP server
npx kubernetes-mcp-server@latest

# Add to Claude Desktop config
{
  "mcpServers": {
    "kubernetes": {
      "command": "npx",
      "args": ["kubernetes-mcp-server@latest"]
    }
  }
}

Use Cases:

  • ?? Natural language cluster management
  • ? Automated troubleshooting with AI
  • ? Resource discovery and analysis
  • ? Security auditing assistance

Security & Compliance

Tools and frameworks for securing ML workloads and ensuring compliance.

ToolDescriptionCategoryLicenseGitHub StarsSecurity Features
IstioService mesh for microservicesService MeshApache 2.035k+mTLS, Traffic policies, Security policies
Open Policy Agent (OPA)Policy engine for cloud-native environmentsPolicy ManagementApache 2.09k+Policy as code, Admission control, RBAC
FalcoRuntime security monitoringRuntime SecurityApache 2.07k+Anomaly detection, Rule engine, Kubernetes-aware
CosignContainer signing and verificationSupply Chain SecurityApache 2.04k+Image signing, SBOM, Attestations

Commercial & Managed Solutions

Enterprise and cloud-managed platforms for Kubernetes AI/ML.

PlatformProviderDescriptionKey Features
Google Vertex AIGoogle CloudManaged ML platformAutoML, Custom training, Model serving, Pipelines
Amazon SageMakerAWSComplete ML serviceNotebooks, Training, Hosting, Pipelines
Azure Machine LearningMicrosoftCloud ML serviceDesigner, AutoML, MLOps, Responsible AI
DatabricksDatabricksUnified analytics platformCollaborative notebooks, MLflow, Delta Lake
H2O.aiH2O.aiAI/ML platformAutoML, Model interpretability, MLOps

Getting Started

?? Prerequisites

  • Kubernetes cluster (v1.20+)
  • kubectl configured
  • Basic understanding of containers and Kubernetes
  • Python/R for ML development

? Quick Start Options

Option 1: Complete MLOps with Kubeflow

# Install kfctl
wget https://github.com/kubeflow/kfctl/releases/download/v1.2.0/kfctl_v1.2.0_linux.tar.gz
tar -xvf kfctl_v1.2.0_linux.tar.gz
sudo mv kfctl /usr/local/bin/

# Deploy Kubeflow
export KF_NAME=my-kubeflow
export BASE_DIR=${HOME}/kubeflow
export KF_DIR=${BASE_DIR}/${KF_NAME}
export CONFIG_URI="https://raw.githubusercontent.com/kubeflow/manifests/v1.2-branch/kfdef/kfctl_k8s_istio.v1.2.0.yaml"

mkdir -p ${KF_DIR}
cd ${KF_DIR}
kfctl apply -V -f ${CONFIG_URI}

Option 2: Model Serving with KServe

kubectl apply -f https://github.com/kserve/kserve/releases/download/v0.8.0/kserve.yaml

Option 3: Workflow Orchestration with Argo

kubectl create namespace argo
kubectl apply -n argo -f https://github.com/argoproj/argo-workflows/releases/download/v3.4.4/install.yaml

Option 4: AI-Native Cluster Management with MCP

npx kubernetes-mcp-server@latest

? Useful Resources

Documentation & Guides

  • CNCF AI/ML Working Group
  • Kubernetes AI/ML Best Practices
  • MLOps Principles
  • Model Context Protocol Documentation
  • Quick Start Guide

Community & Events

  • KubeCon + CloudNativeCon
  • MLOps World
  • Kubeflow Community

? Contributing

We welcome contributions! Please read our Contributing Guide for details.

Quick Contribution Steps

  1. Fork the repository
  2. Create a feature branch (git checkout -b feature/add-new-tool)
  3. Add your changes in the appropriate category table
  4. Commit your changes (git commit -am 'Add new ML tool')
  5. Push to the branch (git push origin feature/add-new-tool)
  6. Create a Pull Request

? Community

Join our community to discuss Kubernetes AI/ML topics:

  • Slack: Collabnix Community
  • Twitter: @collabnix
  • Blog: Collabnix.com
  • YouTube: Collabnix Channel

? License

This project is licensed under the MIT License - see the LICENSE file for details.

? Acknowledgments

  • Thanks to all the open-source contributors in the Kubernetes and AI/ML communities
  • Special recognition to CNCF projects that power cloud-native AI/ML
  • Inspired by the Cloud Native Landscape project
  • MCP servers community for advancing AI-infrastructure integration

Maintained by: Collabnix Community Last Updated: May 2025

? Star this repository if you find it helpful!

Quick Start

1

Clone the repository

git clone https://github.com/collabnix/kubernetes-ai-landscape
2

Install dependencies

cd kubernetes-ai-landscape
npm install
3

Follow the documentation

Check the repository's README.md file for specific installation and usage instructions.

Repository Details

Ownercollabnix
Repokubernetes-ai-landscape
LanguageTypeScript
LicenseMIT License
Last fetched8/10/2025

Recommended MCP Servers

💬

Discord MCP

Enable AI assistants to seamlessly interact with Discord servers, channels, and messages.

integrationsdiscordchat
🔗

Knit MCP

Connect AI agents to 200+ SaaS applications and automate workflows.

integrationsautomationsaas
🕷️

Apify MCP Server

Deploy and interact with Apify actors for web scraping and data extraction.

apifycrawlerdata
🌐

BrowserStack MCP

BrowserStack MCP Server for automated testing across multiple browsers.

testingqabrowsers

Zapier MCP

A Zapier server that provides automation capabilities for various apps.

zapierautomation