
mcp kubernetes server
A lightweight MCP server that provides natural language processing and API access to Kubernetes clusters, combining both kubectl commands and Kubernetes Python client.
Repository Info
About This Server
A lightweight MCP server that provides natural language processing and API access to Kubernetes clusters, combining both kubectl commands and Kubernetes Python client.
Model Context Protocol (MCP) - This server can be integrated with AI applications to provide additional context and capabilities, enabling enhanced AI interactions and functionality.
Documentation
Kubernetes MCP Server
A lightweight MCP server that provides natural language processing and API access to Kubernetes clusters, combining both kubectl commands and Kubernetes Python client.
https://github.com/user-attachments/assets/48e061cd-3e85-40ff-ab04-a1a2b9bbd152
✨ Features
- Natural Language Interface: Convert plain English queries to kubectl commands
- List pods and deployments across all namespaces
- Fallback to general resource listing for unsupported queries
- Full CRUD Operations:
- 🆕 Create/Delete namespaces, pods, and deployments via API endpoints
- 🔍 Inspect cluster resources
- ✏️ Modify labels, annotations, and deployment configurations
- 🗑️ Graceful deletion
- 📊 Scale deployments
- Dual Execution Mode:
kubectlcommand integration- Kubernetes Python client (official SDK)
- Advanced Capabilities:
- Namespace validation (DNS-1123 compliant)
- Label filtering
- Grace period control
- Automatic command fallback
- Resource management (CPU, memory)
- Environment variable configuration
📦 Installation
Prerequisites
- Python 3.11+
- Kubernetes cluster access
kubectlconfigured locally- UV installed
# Clone repository
git clone https://github.com/ductnn/mcp-kubernetes-server.git
cd mcp-kubernetes-server
# Create virtual environment
uv venv .venv
# Activate (Unix)
source .venv/bin/activate
# Install dependencies
uv pip install -r requirements.txt
🚀 Usage
Natural Language Processing
The server supports basic natural language queries for listing resources:
# List all pods
result = nl_processor.process("Show me all pods")
# List all deployments
result = nl_processor.process("Show me all deployments")
# Query with namespace
result = nl_processor.process("Show me all resources", "kube-system")
For more complex operations, use the dedicated API endpoints:
# Create a pod
pod_service.create_pod(
name="my-pod",
namespace="default",
image="nginx:latest",
labels={"app": "my-app"}
)
# Create a deployment
deployment_service.create_deployment(
name="my-deployment",
namespace="default",
image="nginx:latest",
replicas=3
)
# Delete a namespace
namespace_service.delete("my-namespace", force=True)
API Endpoints
The server provides RESTful endpoints for all operations:
/api/pods- Pod operations/api/deployments- Deployment operations/api/namespaces- Namespace operations/api/cluster- Cluster operations/api/nlp- Natural language processing
🤖 Usage with AI Assistants
Claude Desktop
- Open your Claude Desktop and choose
Settings-> choose modeDeveloper->Edit configand open fileclaude_desktop_config.jsonand edit:
{
"mcpServers": {
"kubernetes": {
"command": "/path-to-your-uv/uv",
"args": [
"--directory",
"/path-you-project/", // Example for me /Users/ductn/mcp-kubernetes-server
"run",
"main.py"
]
}
}
}
- Then, restart your Claude Desktop and play :)
🧪 Testing
Run the test suite:
# Run all tests
pytest
# Run specific test file
pytest tests/unit/test_pod_service.py
# Run with coverage
pytest --cov=.
📝 License
This project is licensed under the MIT License - see the LICENSE file for details.
Quick Start
Clone the repository
git clone https://github.com/ductnn/mcp-kubernetes-serverInstall dependencies
cd mcp-kubernetes-server
npm installFollow the documentation
Check the repository's README.md file for specific installation and usage instructions.
Repository Details
Recommended MCP Servers
Discord MCP
Enable AI assistants to seamlessly interact with Discord servers, channels, and messages.
Knit MCP
Connect AI agents to 200+ SaaS applications and automate workflows.
Apify MCP Server
Deploy and interact with Apify actors for web scraping and data extraction.
BrowserStack MCP
BrowserStack MCP Server for automated testing across multiple browsers.
Zapier MCP
A Zapier server that provides automation capabilities for various apps.