ferrary7
MCP Serverferrary7public

mcpitself

用于创建和管理模型上下文协议的多智能体系统,支持项目规划、架构设计和代码编写。

Repository Info

0
Stars
0
Forks
0
Watchers
0
Issues
Python
Language
-
License

About This Server

用于创建和管理模型上下文协议的多智能体系统,支持项目规划、架构设计和代码编写。

Model Context Protocol (MCP) - This server can be integrated with AI applications to provide additional context and capabilities, enabling enhanced AI interactions and functionality.

Documentation

Model Context Protocol (MCP) Server

The MCP server, named mcpitself, is designed to facilitate the creation and management of Model Context Protocols. It leverages a multi-agent system to automate and streamline the development of new MCPs.

Overview

mcpitself is a sophisticated system that uses specialized agents to collaborate on software development tasks. These agents communicate through a structured message-passing system and can handle various tasks like planning projects, designing architectures, and writing code.

Key Features

  • Collaborative Multi-Agent System: Includes Planner, Architect, Coder, and Memory agents, each with specialized roles.
  • AI-Powered Decision Making: Utilizes the Gemini API for generating intelligent responses and content.
  • Persistent Memory: Stores conversation history and agent states for future reference.
  • Extensible and Modular: Designed to be easily extended with new agents or capabilities.

Installation

  1. Clone the repository:

    git clone https://github.com/yourusername/mcpitself.git
    cd mcpitself
    
  2. Install dependencies:

    pip install -r requirements.txt
    
  3. Set up environment variables:

    • Copy .env.example to .env and update with your API keys
    • Or set environment variables manually

Configuration

The application uses environment variables for configuration:

  • GEMINI_API_KEY : Your Gemini API key
  • GEMINI_API_URL : The Gemini API endpoint
  • PORT : Server port (default: 8000)
  • HOST : Server host (default: 0.0.0.0)
  • DEBUG : Debug mode (True/False)
  • MEMORY_STORAGE_PATH : Path to store memory data

Usage

  1. Start the server:

    uvicorn app:app --reload
    
  2. Access the API at http://localhost:8000

  3. Send messages to agents using the /messages endpoint:

    curl -X 'POST' \
      'http://localhost:8000/messages' \
      -H 'accept: application/json' \
      -H 'Content-Type: application/json' \
      -d '{
        "sender": "user",
        "recipient": "architect",
        "message_type": "query",
        "content": {
          "type": "architecture_question",
          "question": "What architecture would you recommend for a high-traffic e-commerce platform?"
        }
      }'
    

Agent Types

  • PlannerAgent : Breaks down goals into actionable steps
  • ArchitectAgent : Provides architecture recommendations and designs
  • CoderAgent : Writes and reviews code
  • MemoryAgent : Manages system memory and retrieves relevant information

Project Structure

mcpitself/
├── agents/                 # Agent implementations
│   ├── __init__.py
│   ├── architect_agent.py
│   ├── base_agent.py
│   ├── coder_agent.py
│   ├── memory_agent.py
│   └── planner_agent.py
├── memory_data/            # Persistent storage
│   ├── agents.json
│   └── messages.json
├── utils/                  # Utility functions
│   ├── __init__.py
│   └── ai_integration.py
├── app.py                  # Main application
├── requirements.txt        # Dependencies
├── .env                    # Environment variables (production)
├── .env.example            # Example environment variables
└── README.md               # This file

## API Endpoints
- POST /messages : Send a message to an agent
- GET /messages : Get all messages
- POST /goals : Create a new goal
- GET /goals : Get all goals
- GET /goals/{task_id} : Get a specific goal
- GET /agents : Get all agents
- GET /agents/{agent_id} : Get a specific agent
- POST /self-improve : Self-improve the system


## API doc:

📘 MCPitself API Documentation

Quick Start

1

Clone the repository

git clone https://github.com/ferrary7/mcpitself
2

Install dependencies

cd mcpitself
npm install
3

Follow the documentation

Check the repository's README.md file for specific installation and usage instructions.

Repository Details

Ownerferrary7
Repomcpitself
LanguagePython
License-
Last fetched8/10/2025

Recommended MCP Servers

💬

Discord MCP

Enable AI assistants to seamlessly interact with Discord servers, channels, and messages.

integrationsdiscordchat
🔗

Knit MCP

Connect AI agents to 200+ SaaS applications and automate workflows.

integrationsautomationsaas
🕷️

Apify MCP Server

Deploy and interact with Apify actors for web scraping and data extraction.

apifycrawlerdata
🌐

BrowserStack MCP

BrowserStack MCP Server for automated testing across multiple browsers.

testingqabrowsers

Zapier MCP

A Zapier server that provides automation capabilities for various apps.

zapierautomation