
kotlin vertexai workbench container
用于 Google Cloud Vertex AI 工作台实例的自定义容器,支持 Kotlin Jupyter 内核。
Repository Info
About This Server
用于 Google Cloud Vertex AI 工作台实例的自定义容器,支持 Kotlin Jupyter 内核。
Model Context Protocol (MCP) - This server can be integrated with AI applications to provide additional context and capabilities, enabling enhanced AI interactions and functionality.
Documentation
Kotlin Jupyter Kernel with Vertex AI Workbench
This container can be used as a custom container for Google Cloud Vertex AI Workbench instances.
The architecture to build a Vertex AI workbench container image.
Lab 0: Create Vertex AI Workbench
Step 1: Select the project and open Google Cloud Shell
Login to Google Cloud Platform. Select the right project and click to open the Google Cloud Shell as shown below.
Step 2: Create Kotlin Jupyter Vertex AI Workbench (takes 10 minutes)
Accept and authorize to use Google Cloud Shell. Copy and paste the following scripts. The script will do the following:
2.1 Enable all the services in Google Cloud
2.2 Create Artifacts Repository for Kotlin Jupyter container image.
2.3 Create serverless Cloud Build to build the image from this repository's Dockerfile.
See the cloudbuild.yaml configuration.
2.4 Create Vertex AI workbench instance
# clone the repository
echo "[Step 2] Clone the repository..."
cd ~
git clone https://github.com/gaplo917/kotlin-vertexai-workbench-container.git || true
cd kotlin-vertexai-workbench-container
git fetch --all && git reset --hard origin/main
# enable services APIs
echo "[Step 2.1] Enable services APIs..."
gcloud services enable aiplatform.googleapis.com
gcloud services enable artifactregistry.googleapis.com
gcloud services enable cloudbuild.googleapis.com
gcloud services enable containerfilesystem.googleapis.com
gcloud services enable containerregistry.googleapis.com
PROJECT_ID=$(gcloud config get-value project)
# create artifacts repository
echo "[Step 2.2] Create artifacts repository..."
gcloud artifacts repositories create demo --repository-format=docker --location=us --project=$PROJECT_ID || true
# create build to push image to repository
echo "[Step 2.3] create build to push image to repository..."
gcloud builds submit --config cloudbuild.yaml
# create Vertex AI workbench instance
echo "[Step 2.4] create Vertex AI workbench instance..."
gcloud workbench instances create kotlin-workbench-instance \
--metadata=idle-timeout-seconds=10800 \
--location=us-central1-a \
--container-repository=us-docker.pkg.dev/$PROJECT_ID/demo/kotlin-vertexai-workbench-container \
--container-tag=latest \
--machine-type=e2-standard-4 \
--project=$PROJECT_ID
echo "[Completed] You can go to https://console.cloud.google.com/vertex-ai/workbench/instances"
Step 3: Go to Vertex AI workbench
https://console.cloud.google.com/vertex-ai/workbench/instances
Lab 1: Run Kotlin Jupyter Notebook for Gemini
Step 1: Open Jupyter Lab > Terminal
Step 2: Clone the repository
- Type
git clone https://github.com/gaplo917/awesome-kotlin-notebook/for Lab 1, 3 - Type
git clone https://github.com/gaplo917/kotlin-cyrpto-price-spring-mcp-server-demofor Lab 3
Step 3: Get your Project ID
Type echo $(gcloud config get-value project) to get your project ID
Step 4: Open the Kotlin Jupyter Notebook
Navigate awesome-kotlin-notebook/google-genai-sdk/ in the file browser. Open vertexai-gemini-examples.ipynb.
Step 5: Run the Kotlin Notebook
Remember to replace your project ID in one of the cells
Lab 2: Run Spring Boot MCP Server
- Navigate
kotlin-cyrpto-price-spring-mcp-server-demo/in the file browser - Open
notebook.ipynb - Start Spring Boot MCP Server and proceed to Lab 3
The MCP Architecture
Lab 3: Run Kotlin Jupyter Notebook for Langchain4j MCP Client
Follow up on Lab 1:
- Navigate
awesome-kotlin-notebook/langchain4j/in the file browser - Open
langchain4j-mcp-client-vertexai.ipynb - Run the Kotlin Notebook, remember to replace your project ID in one of the cells
Completed all labs
Congratulation! You have completed all the labs! Remember to delete Vertex AI instance to avoid unnecessary charges.
Quick Start
Clone the repository
git clone https://github.com/gaplo917/kotlin-vertexai-workbench-containerInstall dependencies
cd kotlin-vertexai-workbench-container
npm installFollow the documentation
Check the repository's README.md file for specific installation and usage instructions.
Repository Details
Recommended MCP Servers
Discord MCP
Enable AI assistants to seamlessly interact with Discord servers, channels, and messages.
Knit MCP
Connect AI agents to 200+ SaaS applications and automate workflows.
Apify MCP Server
Deploy and interact with Apify actors for web scraping and data extraction.
BrowserStack MCP
BrowserStack MCP Server for automated testing across multiple browsers.
Zapier MCP
A Zapier server that provides automation capabilities for various apps.