
mcp server qdrant retrive
MCP server for semantic search with Qdrant vector database
Repository Info
About This Server
MCP server for semantic search with Qdrant vector database
Model Context Protocol (MCP) - This server can be integrated with AI applications to provide additional context and capabilities, enabling enhanced AI interactions and functionality.
Documentation
Qdrant Retrieve MCP Server
MCP server for semantic search with Qdrant vector database.
Features
- Semantic search across multiple collections
- Multi-query support
- Configurable result count
- Collection source tracking
Note: The server connects to a Qdrant instance specified by URL.
Note 2: The first retrieve might be slower, as the MCP server downloads the required embedding model.
API
Tools
- qdrant_retrieve
- Retrieves semantically similar documents from multiple Qdrant vector store collections based on multiple queries
- Inputs:
collectionNames(string[]): Names of the Qdrant collections to search acrosstopK(number): Number of top similar documents to retrieve (default: 3)query(string[]): Array of query texts to search for
- Returns:
results: Array of retrieved documents with:query: The query that produced this resultcollectionName: Collection name that this result came fromtext: Document text contentscore: Similarity score between 0 and 1
Usage with Claude Desktop
Add this to your claude_desktop_config.json:
{
"mcpServers": {
"qdrant": {
"command": "npx",
"args": ["-y", "@gergelyszerovay/mcp-server-qdrant-retrive"],
"env": {
"QDRANT_API_KEY": "your_api_key_here"
}
}
}
}
Command Line Options
MCP server for semantic search with Qdrant vector database.
Options
--enableHttpTransport Enable HTTP transport [default: false]
--enableStdioTransport Enable stdio transport [default: true]
--enableRestServer Enable REST API server [default: false]
--mcpHttpPort=<port> Port for MCP HTTP server [default: 3001]
--restHttpPort=<port> Port for REST HTTP server [default: 3002]
--qdrantUrl=<url> URL for Qdrant vector database [default: http://localhost:6333]
--embeddingModelType=<type> Type of embedding model to use [default: Xenova/all-MiniLM-L6-v2]
--help Show this help message
Environment Variables
QDRANT_API_KEY API key for authenticated Qdrant instances (optional)
Examples
$ mcp-qdrant --enableHttpTransport
$ mcp-qdrant --mcpHttpPort=3005 --restHttpPort=3006
$ mcp-qdrant --qdrantUrl=http://qdrant.example.com:6333
$ mcp-qdrant --embeddingModelType=Xenova/all-MiniLM-L6-v2
Quick Start
Clone the repository
git clone https://github.com/gergelyszerovay/mcp-server-qdrant-retriveInstall dependencies
cd mcp-server-qdrant-retrive
npm installFollow the documentation
Check the repository's README.md file for specific installation and usage instructions.
Repository Details
Recommended MCP Servers
Discord MCP
Enable AI assistants to seamlessly interact with Discord servers, channels, and messages.
Knit MCP
Connect AI agents to 200+ SaaS applications and automate workflows.
Apify MCP Server
Deploy and interact with Apify actors for web scraping and data extraction.
BrowserStack MCP
BrowserStack MCP Server for automated testing across multiple browsers.
Zapier MCP
A Zapier server that provides automation capabilities for various apps.