
mcp_browser
一个现代 React 应用,提供与 MCP 服务器交互的用户友好界面。
Repository Info
About This Server
一个现代 React 应用,提供与 MCP 服务器交互的用户友好界面。
Model Context Protocol (MCP) - This server can be integrated with AI applications to provide additional context and capabilities, enabling enhanced AI interactions and functionality.
Documentation
Browser-use MCP Client
A modern React application that provides a user-friendly interface for interacting with Model Context Protocol (MCP) servers through Server-Sent Events (SSE).
🎥 Demo
https://github.com/user-attachments/assets/52ab11ad-741f-4506-99ad-9f1972a3aad1
🚀 Features
- Real-time Communication: Direct SSE connection to MCP servers
- Interactive UI: Clean and responsive interface built with React and Tailwind CSS
- Theme Support: Light and dark mode with system preference detection
- Screenshot Preview: Live browser screenshots from MCP server responses
- Message History: Persistent chat history with clear message threading
- Request Management: Cancel in-progress requests and clear chat history
- Connection Management: Easy server connection configuration
📋 Prerequisites
- Node.js (v18 or later)
- pnpm (recommended package manager)
- A running MCP server for connection
- Python 3.8+ (for running the example server)
🚀 Getting Started
-
Clone the Repository
git clone <repository-url> cd browser-use-mcp-client -
Install Dependencies
pnpm install -
Start the Development Server
pnpm dev -
Start the Proxy Server
./proxy/index.js
The application will be available at http://localhost:5173
💻 Usage
🤖 Example MCP Server
Here's an example of a Python-based MCP server that uses browser automation:
#!/usr/bin/env python3
import asyncio
from dotenv import load_dotenv
from typing import Awaitable, Callable
from mcp.server.fastmcp import FastMCP, Context
from browser_use import Agent, Browser, BrowserConfig
from langchain_google_genai import ChatGoogleGenerativeAI
# Load environment variables from .env file
load_dotenv()
# Initialize FastMCP server
mcp = FastMCP("browser-use")
browser = Browser(
config=BrowserConfig(
chrome_instance_path="/Applications/Google Chrome.app/Contents/MacOS/Google Chrome --remote-debugging-port=9222",
headless=True
)
)
llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash")
agent = None
@mcp.tool()
async def perform_search(task: str, context: Context):
"""Perform the actual search in the background."""
async def step_handler(state, *args):
if len(args) != 2:
return
await context.session.send_log_message(
level="info",
data={"screenshot": state.screenshot, "result": args[0]}
)
asyncio.create_task(
run_browser_agent(task=task, on_step=step_handler)
)
return "Processing Request"
@mcp.tool()
async def stop_search(*, context: Context):
"""Stop a running browser agent search by task ID."""
if agent is not None:
await agent.stop()
return "Running Agent stopped"
async def run_browser_agent(task: str, on_step: Callable[[], Awaitable[None]]):
"""Run the browser-use agent with the specified task."""
global agent
try:
agent = Agent(
task=task,
browser=browser,
llm=llm,
register_new_step_callback=on_step,
register_done_callback=on_step,
)
await agent.run()
except asyncio.CancelledError:
return "Task was cancelled"
except Exception as e:
return f"Error during execution: {str(e)}"
finally:
await browser.close()
if __name__ == "__main__":
mcp.run(transport="sse")
🤝 Contributing
- Fork the repository
- Create a feature branch
- Commit your changes
- Push to the branch
- Open a Pull Request
📄 License
This project is licensed under the MIT License - see the LICENSE file for details.
Quick Start
Clone the repository
git clone https://github.com/harshatrebound/mcp_browserInstall dependencies
cd mcp_browser
npm installFollow the documentation
Check the repository's README.md file for specific installation and usage instructions.
Repository Details
Recommended MCP Servers
Discord MCP
Enable AI assistants to seamlessly interact with Discord servers, channels, and messages.
Knit MCP
Connect AI agents to 200+ SaaS applications and automate workflows.
Apify MCP Server
Deploy and interact with Apify actors for web scraping and data extraction.
BrowserStack MCP
BrowserStack MCP Server for automated testing across multiple browsers.
Zapier MCP
A Zapier server that provides automation capabilities for various apps.