
ragdocs
MCP server for RAG-based document search and management
Repository Info
About This Server
MCP server for RAG-based document search and management
Model Context Protocol (MCP) - This server can be integrated with AI applications to provide additional context and capabilities, enabling enhanced AI interactions and functionality.
Documentation
RagDocs MCP Server
A Model Context Protocol (MCP) server that provides RAG (Retrieval-Augmented Generation) capabilities using Qdrant vector database and Ollama/OpenAI embeddings. This server enables semantic search and management of documentation through vector similarity.
Features
- Add documentation with metadata
- Semantic search through documents
- List and organize documentation
- Delete documents
- Support for both Ollama (free) and OpenAI (paid) embeddings
- Automatic text chunking and embedding generation
- Vector storage with Qdrant
Prerequisites
- Node.js 16 or higher
- One of the following Qdrant setups:
- Local instance using Docker (free)
- Qdrant Cloud account with API key (managed service)
- One of the following for embeddings:
- Ollama running locally (default, free)
- OpenAI API key (optional, paid)
Available Tools
1. add_document
Add a document to the RAG system.
Parameters:
url(required): Document URL/identifiercontent(required): Document contentmetadata(optional): Document metadatatitle: Document titlecontentType: Content type (e.g., "text/markdown")
2. search_documents
Search through stored documents using semantic similarity.
Parameters:
query(required): Natural language search queryoptions(optional):limit: Maximum number of results (1-20, default: 5)scoreThreshold: Minimum similarity score (0-1, default: 0.7)filters:domain: Filter by domainhasCode: Filter for documents containing codeafter: Filter for documents after date (ISO format)before: Filter for documents before date (ISO format)
3. list_documents
List all stored documents with pagination and grouping options.
Parameters (all optional):
page: Page number (default: 1)pageSize: Number of documents per page (1-100, default: 20)groupByDomain: Group documents by domain (default: false)sortBy: Sort field ("timestamp", "title", or "domain")sortOrder: Sort order ("asc" or "desc")
4. delete_document
Delete a document from the RAG system.
Parameters:
url(required): URL of the document to delete
Installation
npm install -g @mcpservers/ragdocs
MCP Server Configuration
{
"mcpServers": {
"ragdocs": {
"command": "node",
"args": ["@mcpservers/ragdocs"],
"env": {
"QDRANT_URL": "http://127.0.0.1:6333",
"EMBEDDING_PROVIDER": "ollama"
}
}
}
}
Using Qdrant Cloud:
{
"mcpServers": {
"ragdocs": {
"command": "node",
"args": ["@mcpservers/ragdocs"],
"env": {
"QDRANT_URL": "https://your-cluster-url.qdrant.tech",
"QDRANT_API_KEY": "your-qdrant-api-key",
"EMBEDDING_PROVIDER": "ollama"
}
}
}
}
Using OpenAI:
{
"mcpServers": {
"ragdocs": {
"command": "node",
"args": ["@mcpservers/ragdocs"],
"env": {
"QDRANT_URL": "http://127.0.0.1:6333",
"EMBEDDING_PROVIDER": "openai",
"OPENAI_API_KEY": "your-api-key"
}
}
}
}
Local Qdrant with Docker
docker run -d --name qdrant -p 6333:6333 -p 6334:6334 qdrant/qdrant
Environment Variables
QDRANT_URL: URL of your Qdrant instance- For local: "http://127.0.0.1:6333" (default)
- For cloud: "https://your-cluster-url.qdrant.tech"
QDRANT_API_KEY: API key for Qdrant Cloud (required when using cloud instance)EMBEDDING_PROVIDER: Choice of embedding provider ("ollama" or "openai", default: "ollama")OPENAI_API_KEY: OpenAI API key (required if using OpenAI)EMBEDDING_MODEL: Model to use for embeddings- For Ollama: defaults to "nomic-embed-text"
- For OpenAI: defaults to "text-embedding-3-small"
License
Apache License 2.0
Quick Start
Clone the repository
git clone https://github.com/heltonteixeira/ragdocsInstall dependencies
cd ragdocs
npm installFollow the documentation
Check the repository's README.md file for specific installation and usage instructions.
Repository Details
Recommended MCP Servers
Discord MCP
Enable AI assistants to seamlessly interact with Discord servers, channels, and messages.
Knit MCP
Connect AI agents to 200+ SaaS applications and automate workflows.
Apify MCP Server
Deploy and interact with Apify actors for web scraping and data extraction.
BrowserStack MCP
BrowserStack MCP Server for automated testing across multiple browsers.
Zapier MCP
A Zapier server that provides automation capabilities for various apps.