
langgraph mcp
一个轻量级封装库,使 Anthropic MCP 工具与 LangChain 和 LangGraph 兼容。
Repository Info
About This Server
一个轻量级封装库,使 Anthropic MCP 工具与 LangChain 和 LangGraph 兼容。
Model Context Protocol (MCP) - This server can be integrated with AI applications to provide additional context and capabilities, enabling enhanced AI interactions and functionality.
Documentation
langgraph-mcp
ref: https://github.com/langchain-ai/langchain-mcp-adapters
LangChain MCP Adapters
This library provides a lightweight wrapper that makes Anthropic Model Context Protocol (MCP) tools compatible with LangChain and LangGraph.
!MCP
Features
- 🛠️ Convert MCP tools into LangChain tools that can be used with LangGraph agents
- 📦 A client implementation that allows you to connect to multiple MCP servers and load tools from them
Installation
pip install langchain-mcp-adapters
Quickstart
Here is a simple example of using the MCP tools with a LangGraph agent.
pip install langchain-mcp-adapters langgraph langchain-openai
export OPENAI_API_KEY=<your_api_key>
Server
First, let's create an MCP server that can add and multiply numbers.
# math_server.py
from mcp.server.fastmcp import FastMCP
mcp = FastMCP("Math")
@mcp.tool()
def add(a: int, b: int) -> int:
"""Add two numbers"""
return a + b
@mcp.tool()
def multiply(a: int, b: int) -> int:
"""Multiply two numbers"""
return a * b
if __name__ == "__main__":
mcp.run(transport="stdio")
Client
# Create server parameters for stdio connection
from mcp import ClientSession, StdioServerParameters
from mcp.client.stdio import stdio_client
from langchain_mcp_adapters.tools import load_mcp_tools
from langgraph.prebuilt import create_react_agent
from langchain_openai import ChatOpenAI
model = ChatOpenAI(model="gpt-4o")
server_params = StdioServerParameters(
command="python",
# Make sure to update to the full absolute path to your math_server.py file
args=["/path/to/math_server.py"],
)
async with stdio_client(server_params) as (read, write):
async with ClientSession(read, write) as session:
# Initialize the connection
await session.initialize()
# Get tools
tools = await load_mcp_tools(session)
# Create and run the agent
agent = create_react_agent(model, tools)
agent_response = await agent.ainvoke({"messages": "what's (3 + 5) x 12?"})
Multiple MCP Servers
The library also allows you to connect to multiple MCP servers and load tools from them:
Server
# math_server.py
...
# weather_server.py
from typing import List
from mcp.server.fastmcp import FastMCP
mcp = FastMCP("Weather")
@mcp.tool()
async def get_weather(location: str) -> str:
"""Get weather for location."""
return "It's always sunny in New York"
if __name__ == "__main__":
mcp.run(transport="sse")
python weather_server.py
Client
from langchain_mcp_adapters.client import MultiServerMCPClient
from langgraph.prebuilt import create_react_agent
from langchain_openai import ChatOpenAI
model = ChatOpenAI(model="gpt-4o")
async with MultiServerMCPClient(
{
"math": {
"command": "python",
# Make sure to update to the full absolute path to your math_server.py file
"args": ["/path/to/math_server.py"],
"transport": "stdio",
},
"weather": {
# make sure you start your weather server on port 8000
"url": "http://localhost:8000/sse",
"transport": "sse",
}
}
) as client:
agent = create_react_agent(model, client.get_tools())
math_response = await agent.ainvoke({"messages": "what's (3 + 5) x 12?"})
weather_response = await agent.ainvoke({"messages": "what is the weather in nyc?"})
Using with LangGraph API Server
TIP
Check out this guide on getting started with LangGraph API server.
If you want to run a LangGraph agent that uses MCP tools in a LangGraph API server, you can use the following setup:
# graph.py
from contextlib import asynccontextmanager
from langchain_mcp_adapters.client import MultiServerMCPClient
from langgraph.prebuilt import create_react_agent
from langchain_anthropic import ChatAnthropic
model = ChatAnthropic(model="claude-3-5-sonnet-latest")
@asynccontextmanager
async def make_graph():
async with MultiServerMCPClient(
{
"math": {
"command": "python",
# Make sure to update to the full absolute path to your math_server.py file
"args": ["/path/to/math_server.py"],
"transport": "stdio",
},
"weather": {
# make sure you start your weather server on port 8000
"url": "http://localhost:8000/sse",
"transport": "sse",
}
}
) as client:
agent = create_react_agent(model, client.get_tools())
yield agent
In your langgraph.json make sure to specify make_graph as your graph entrypoint:
{
"dependencies": ["."],
"graphs": {
"agent": "./graph.py:make_graph"
}
}
Quick Start
Clone the repository
git clone https://github.com/hyunho1027/langgraph-mcpInstall dependencies
cd langgraph-mcp
npm installFollow the documentation
Check the repository's README.md file for specific installation and usage instructions.
Repository Details
Recommended MCP Servers
Discord MCP
Enable AI assistants to seamlessly interact with Discord servers, channels, and messages.
Knit MCP
Connect AI agents to 200+ SaaS applications and automate workflows.
Apify MCP Server
Deploy and interact with Apify actors for web scraping and data extraction.
BrowserStack MCP
BrowserStack MCP Server for automated testing across multiple browsers.
Zapier MCP
A Zapier server that provides automation capabilities for various apps.