
abacus mcp
用于搜索和管理arXiv论文的MCP服务器,支持智能信息提取与本地存储。
Repository Info
About This Server
用于搜索和管理arXiv论文的MCP服务器,支持智能信息提取与本地存储。
Model Context Protocol (MCP) - This server can be integrated with AI applications to provide additional context and capabilities, enabling enhanced AI interactions and functionality.
Documentation
Agent Test - MCP Research Server
MCP server for searching and managing arXiv research papers with intelligent paper information extraction and local storage.
📋 Prerequisites
1. Install Node.js 18 with NVM
Linux/macOS:
# Install NVM
# Refer to https://github.com/nvm-sh/nvm for latest version
curl -o- https://raw.githubusercontent.com/nvm-sh/nvm/v0.40.3/install.sh | bash
# Reload shell configuration
source ~/.bashrc # or ~/.zshrc
# Install and use Node.js 18
nvm install 18
nvm use 18
# Verify installation
node --version
npm --version
Windows:
- Download and install nvm-windows
- Open new command prompt and run:
nvm install 18
nvm use 18
node --version
npm --version
2. Install UV Package Manager
# Install UV via pip
pip install uv
# Verify installation
uv --version
3. Configure UV Mirror Source (Optional)
For faster package downloads in China:
# Add packages with Tsinghua mirror
uv add --index https://mirrors.tuna.tsinghua.edu.cn/pypi/web/simple <package_name>
# Or set as default index in pyproject.toml (already configured in this project):
# [[tool.uv.index]]
# url = "https://pypi.tuna.tsinghua.edu.cn/simple"
🚀 Quick Start
# Clone the repository
git clone https://github.com/jieli-matrix/abacus-mcp.git
cd abacus-mcp
# For network issues (China/slow connections), set mirror first:
export UV_PYTHON_DOWNLOADS_URL="https://mirrors.tuna.tsinghua.edu.cn/python-release-for-build/"
# Create virtual environment with Python 3.11
uv venv --python 3.11
# Activate virtual environment
source .venv/bin/activate # Linux/macOS
# .venv\Scripts\activate # Windows
# Install dependencies
uv sync
# Start the server (opens port 50001)
uv run research_server.py
# In another terminal, start Inspector
npx @modelcontextprotocol/inspector node build/index.js
# Access Inspector at http://127.0.0.1:6274 and configure:
# - Transport Type: streamable-http
# - URL: http://127.0.0.1:50001/mcp
🛠️ Features
- 📚 Paper Search: Search arXiv papers by topic with relevance ranking
- 🔍 Information Extraction: Extract detailed paper metadata (title, authors, summary, etc.)
- 💾 Local Storage: Store paper information in organized JSON files
- 🤖 MCP Integration: Compatible with MCP-enabled AI assistants
- ⚡ Fast Performance: Built with UV package manager for speed
📦 Available Tools
search_papers
Search for papers on arXiv based on a topic and store their information locally.
Parameters:
topic(str): The research topic to search formax_results(int, optional): Maximum number of results to retrieve (default: 5)
Returns:
- List of paper IDs found in the search
Example:
{
"topic": "machine learning",
"max_results": 3
}
extract_info
Retrieve stored information about a specific paper from local storage.
Parameters:
paper_id(str): The arXiv paper ID to look for
Returns:
- JSON string with paper information if found, error message if not found
Example:
{
"paper_id": "2301.12345"
}
🏗️ Project Structure
agent-test/
├── .venv/ # Virtual environment
├── research_server.py # Main MCP server implementation
├── main.py # Entry point
├── pyproject.toml # UV project configuration
├── uv.lock # Dependency lock file
├── papers/ # Generated paper storage directory
│ └── topic_name/
│ └── papers_info.json
├── README.md
└── .gitignore # Git ignore rules
🔧 Development
Prerequisites
- Python 3.11+
- Node.js 18+ (for MCP Inspector)
- UV package manager
Setup Development Environment
# Install UV (if not already installed)
pip install uv
# Install development dependencies
uv add mcp arxiv
🌐 Deployment Options
Option 1: Local Development
For local development:
# Start the server locally (opens port 50001)
uv run research_server.py
# In another terminal, start Inspector
npx @modelcontextprotocol/inspector node build/index.js
Access Inspector at http://127.0.0.1:6274
# Configure in Inspector UI:
- Transport Type: streamable-http
- URL: http://127.0.0.1:50001/mcp
Option 2: Remote Server Deployment
For remote server deployment using streamable-http transport:
Step 1: Start Server on Remote
# On remote server (opens port 50001)
uv run research_server.py
Step 2: Start Inspector Locally
# On local machine
npx @modelcontextprotocol/inspector node build/index.js
Step 3: Configure Inspector
Access http://127.0.0.1:6274 in your local browser and configure:
- Transport Type:
streamable-http - URL:
http://YOUR_SERVER_IP:50001/mcp
📊 Usage Examples
Search for AI Papers
# Start the server
uv run research_server.py
# In another terminal, start Inspector
npx @modelcontextprotocol/inspector node build/index.js
# In Inspector UI (http://127.0.0.1:6274), configure:
# - Transport Type: streamable-http
# - URL: http://127.0.0.1:50001/mcp
# Then call search_papers:
{
"topic": "artificial intelligence",
"max_results": 5
}
Extract Paper Information
# After searching, extract specific paper info:
{
"paper_id": "2301.07041"
}
🤝 Contributing
- Fork the repository
- Create a feature branch (
git checkout -b feature/amazing-feature) - Commit your changes (
git commit -m 'Add amazing feature') - Push to the branch (
git push origin feature/amazing-feature) - Open a Pull Request
📄 License
This project is licensed under the MIT License - see the LICENSE file for details.
🔗 Resources
- MCP Documentation
- arXiv API Documentation
- FastMCP
- UV Package Manager
🐛 Troubleshooting
Common Issues
| Issue | Solution |
|---|---|
ModuleNotFoundError: mcp | Run uv sync to install dependencies |
| Inspector connection failed | Check Node.js version (node --version) |
Quick Start
Clone the repository
git clone https://github.com/jieli-matrix/abacus-mcpInstall dependencies
cd abacus-mcp
npm installFollow the documentation
Check the repository's README.md file for specific installation and usage instructions.
Repository Details
Recommended MCP Servers
Discord MCP
Enable AI assistants to seamlessly interact with Discord servers, channels, and messages.
Knit MCP
Connect AI agents to 200+ SaaS applications and automate workflows.
Apify MCP Server
Deploy and interact with Apify actors for web scraping and data extraction.
BrowserStack MCP
BrowserStack MCP Server for automated testing across multiple browsers.
Zapier MCP
A Zapier server that provides automation capabilities for various apps.