
expense tracker mcp
一个支持层级分类、AI 自动归类和 Supabase 后端的生产级记账服务。
Repository Info
About This Server
一个支持层级分类、AI 自动归类和 Supabase 后端的生产级记账服务。
Model Context Protocol (MCP) - This server can be integrated with AI applications to provide additional context and capabilities, enabling enhanced AI interactions and functionality.
Documentation
Expense Tracker Backend
AI-powered expense tracking system with natural language interface, intelligent categorization, and real-time sync.
Architecture
The system uses a two-server architecture:
- MCP Server: Core expense tracking tools exposed via Model Context Protocol
- Gemini AI Server: FastAPI server providing chat interface with authentication
Features
- 🤖 Natural language expense management via Gemini AI
- 🧠 Intelligent categorization using embeddings and similarity search
- 🔐 JWT authentication with Supabase
- 📊 Hierarchical categories for organization
- 🏷️ Predefined tag system
- 📈 Real-time data sync
- 🔄 Learning system that improves over time
Quick Start
Prerequisites
python3 -m venv venv
source venv/bin/activate
pip install -r requirements.txt
Environment Setup
cp .env.example .env
# Add your credentials:
# - SUPABASE_URL
# - SUPABASE_KEY
# - GOOGLE_API_KEY (for Gemini)
Database Setup
Execute the SQL scripts in your Supabase SQL Editor:
# Core tables
scripts/create_tables.sql
# Embeddings support
scripts/create_embeddings_schema.sql
Run Both Servers
Terminal 1 - MCP Server:
python run_mcp.py
Terminal 2 - Gemini AI Server:
uvicorn app.servers.gemini.main:app --reload --port 8000
Initialize Data
# Populate categories
python scripts/populate_hierarchical_categories.py
# Populate predefined tags
python scripts/populate_predefined_tags.py
API Endpoints
Chat Interface
POST /chat- Send natural language commandsPOST /auth/refresh- Refresh JWT token
MCP Tools (via chat)
- Create expenses from natural language
- Auto-categorize transactions
- Get spending summaries
- Analyze subscriptions
- View recent transactions
Flutter Client
refer https://github.com/keyurgit45/expense-tracker-client
Testing
# Run all tests with mocks
ENVIRONMENT=test pytest tests/ -v
# Run specific components
ENVIRONMENT=test pytest tests/test_mcp_tools.py -v
ENVIRONMENT=test pytest tests/test_categorization.py -v
Project Structure
backend/
├── app/
│ ├── core/ # Business logic
│ ├── servers/
│ │ ├── gemini/ # AI chat server
│ │ └── mcp/ # MCP tool server
│ └── shared/ # Shared configs
├── scripts/ # Utilities
└── tests/ # Test suite
AI Categorization
The system uses a hybrid approach:
- Generates embeddings for transactions using Sentence Transformers
- Finds similar past transactions using pgvector
- Uses weighted voting to predict categories
- Falls back to rule-based matching
- Learns from user confirmations
Development
- API docs: http://localhost:8000/docs
- Frontend integration: Configure CORS in Gemini server
- MCP tools can be tested directly via chat interface
Quick Start
Clone the repository
git clone https://github.com/keyurgit45/expense-tracker-mcpInstall dependencies
cd expense-tracker-mcp
npm installFollow the documentation
Check the repository's README.md file for specific installation and usage instructions.
Repository Details
Recommended MCP Servers
Discord MCP
Enable AI assistants to seamlessly interact with Discord servers, channels, and messages.
Knit MCP
Connect AI agents to 200+ SaaS applications and automate workflows.
Apify MCP Server
Deploy and interact with Apify actors for web scraping and data extraction.
BrowserStack MCP
BrowserStack MCP Server for automated testing across multiple browsers.
Zapier MCP
A Zapier server that provides automation capabilities for various apps.