
mcp_servers
一个通过 ZenRows 获取网页并返回清理后 Markdown 格式的 MCP 服务器。
Repository Info
About This Server
一个通过 ZenRows 获取网页并返回清理后 Markdown 格式的 MCP 服务器。
Model Context Protocol (MCP) - This server can be integrated with AI applications to provide additional context and capabilities, enabling enhanced AI interactions and functionality.
Documentation
ZenRows Fetch MCP Server
An Model Context Protocol (MCP) server that retrieves web pages through ZenRows and returns a clean, Markdown‑formatted snapshot—while automatically escalating from the cheapest request mode to more advanced (and expensive) bypass levels only when needed.
✨ Features
- Cost‑aware escalation – starts with the base ZenRows request and retries with Premium Proxy → Stealth (Premium + JS) → Stealth + Wait (2 .5 s) until useful content is obtained.
- LLM‑ready output – delivers Markdown/text instead of raw HTML, ideal for downstream summarisation or analysis.
- Optional selector wait – pass a CSS selector to wait for (implies JS rendering) when working with SPAs or late‑loading content.
- Blocked‑page detection – heuristically recognises captchas/forbidden responses and escalates automatically.
- Cost tier metadata – the final tier used (
basic,premium,stealth, orwait) is returned inadditionalParams.meta.costTier. - Zero‑config runtime – ship as an
npxone‑liner, a slim Docker image, or run directly on Node 22+.
🛠️ Tool
zenrowsFetch
Fetches a web page through ZenRows and returns its Markdown rendition.
| Input | Type | Required | Description |
|---|---|---|---|
url | string | ✅ | Fully‑qualified URL to fetch. |
selector | string | CSS selector ZenRows must wait for before snapshot (automatically enables JS rendering). |
Output – Plain‑text (Markdown) content of the page. The enclosing MCP response includes
additionalParams.meta.costTier.
🚀 Usage
Use zenrowsFetch whenever you need a lightweight, resilient webpage retriever that:
- Minimises cost by default but adapts when the target site blocks basic scraping.
- Produces clean, LLM‑friendly Markdown with no extra parsing steps.
- Works equally well for simple HTML pages and heavy JavaScript single‑page apps.
Typical scenarios include web‑content summarisation, ad‑hoc research pipelines, and programmatic ingestion of news/article sites.
⚙️ Configuration
Claude Desktop
npx
{
"mcpServers": {
"zenrows-fetch": {
"command": "npx",
"args": ["-y", "@leonbeckert/server-zenrows"],
"env": {
"ZENROWS_API_KEY": "zenrw_…"
}
}
}
}
docker
{
"mcpServers": {
"zenrows-fetch": {
"command": "docker",
"args": [
"run",
"--rm",
"-i",
"-e",
"ZENROWS_API_KEY=zenrw_…",
"leonbeckert/mcp-zenrows"
]
}
}
}
VS Code / VS Code Insiders (one‑click)
Manual JSON (user settings)
{
"mcp": {
"servers": {
"zenrows-fetch": {
"command": "npx",
"args": ["-y", "@leonbeckert/mcp-zenrows"],
"env": {
"ZENROWS_API_KEY": "zenrw_…"
}
}
}
}
}
Or, for Docker:
{
"mcp": {
"servers": {
"zenrows-fetch": {
"command": "docker",
"args": [
"run",
"--rm",
"-i",
"-e",
"ZENROWS_API_KEY=zenrw_…",
"leonbeckert/mcp-zenrows"
]
}
}
}
}
🏗️ Building
# Build minimal production image
docker build -t mcp/zenrows .
🪪 License
This project is licensed under the MIT License—see the LICENSE file for details.
Quick Start
Clone the repository
git clone https://github.com/leonbeckert/mcp_serversInstall dependencies
cd mcp_servers
npm installFollow the documentation
Check the repository's README.md file for specific installation and usage instructions.
Repository Details
Recommended MCP Servers
Discord MCP
Enable AI assistants to seamlessly interact with Discord servers, channels, and messages.
Knit MCP
Connect AI agents to 200+ SaaS applications and automate workflows.
Apify MCP Server
Deploy and interact with Apify actors for web scraping and data extraction.
BrowserStack MCP
BrowserStack MCP Server for automated testing across multiple browsers.
Zapier MCP
A Zapier server that provides automation capabilities for various apps.