liuivan615
MCP Serverliuivan615public

deep research

一个模块化开源研究自动化工具包,支持法律与跨学科研究。

Repository Info

0
Stars
0
Forks
0
Watchers
1
Issues
Python
Language
-
License

About This Server

一个模块化开源研究自动化工具包,支持法律与跨学科研究。

Model Context Protocol (MCP) - This server can be integrated with AI applications to provide additional context and capabilities, enabling enhanced AI interactions and functionality.

Documentation

deep-research

Deep Research

A modular, open-source research automation toolkit for legal and interdisciplinary studies, integrating LLM-driven query generation, multi-source web search, context extraction, and narrative report generation.


📖 English Version

1. Project Overview

Deep Research is an open-source Python framework designed to streamline and automate in-depth research tasks. By combining Large Language Models (LLMs) with customizable search engines and multi-round retrieval strategies, the toolkit supports rapid collection, filtering, and narrative synthesis of information across legal, academic, and technical domains.

2. Key Features

  • LLM Integration (init_llm_client): Connect to remote or local LLMs (OpenAI, Ollama, DeepSeek, etc.) with a unified client interface.
  • Smart Query Generation (generate_query, get_new_search_queries): Use LLMs to generate and refine search terms over multiple iterations for comprehensive coverage.
  • Multi-Source Web Search (web_search): Query SearXNG (local or fallback public instances) with retry logic, returning top-k links or images.
  • Context Extraction (process_link, extract_relevant_context): Scrape page content, clean text, and extract relevant information snippets via LLM evaluation.
  • Parallel Filtering: Offload large text filtering to lightweight models (e.g., Qwen3:0.6b) in separate threads for efficiency.
  • Narrative Assembly (generate_narrative): Automatically compose structured reports, highlighting "Problem – Solution – Risk Mitigation" sections.
  • Web UI Template (index.html): A ChatGPT-style interface for interactive research sessions, supporting model selection and history.
  • Prompt Templates (prompts.py): System and task-specific prompts for clarification, initial analysis, iterative search, and final report generation.

3. Installation

# Clone repository
git clone https://github.com/your-org/deep-research.git
cd deep-research

# Create virtual environment
python3 -m venv venv
source venv/bin/activate

# Install dependencies
pip install -r requirements.txt
# Optional: install sentence-transformers
pip install sentence-transformers

4. Configuration

  1. LLM Models: Edit deepresearch.py > MODELS to configure API keys and endpoints.
  2. Search Engine: Modify search_mcp.py > SEARXNG_URL and SEARXNG_FALLBACKS for SearXNG instances.
  3. History Storage: research_history.json tracks past sessions.

5. Usage

# Launch research server
python deepresearch.py

# Open the UI
o pen index.html in your browser

# In Python code
from search_mcp import init_llm_client, generate_query, web_search, process_link
from deepresearch import run_research

client = LLMClient('gpt-4o')
init_llm_client(client)
research_id = run_research('Cross-border e-commerce arbitration analysis', 'gpt-4o')

6. Project Structure

├── deepresearch.py       # Core server, threading, research workflow
├── search_mcp.py         # Search, query generation, page processing
├── prompts.py            # LLM prompt templates
├── index.html            # Front-end UI template
├── requirements.txt      # Python dependencies
└── research_data/        # Saved reports & logs

7. License

This project is licensed under the MIT License.


📖 中文版

1. 项目概述

Deep Research 是一个开源 Python 框架,旨在简化和自动化深入研究流程。该工具包将大型语言模型(LLM)与可定制的检索引擎、多轮检索策略相结合,支持跨法律、学术及技术领域的快速信息收集、过滤与报告生成。

2. 核心功能

  • LLM 客户端 (init_llm_client): 统一接口对接远程或本地 LLM(OpenAI、Ollama、DeepSeek 等)。
  • 智能检索词生成 (generate_query, get_new_search_queries): 利用 LLM 多轮生成与优化搜索关键词,确保覆盖广泛。
  • 多源网页搜索 (web_search): 调用本地或公共 SearXNG 实例,带重试逻辑,返回前 k 条链接或图片。
  • 上下文抽取 (process_link, extract_relevant_context): 页面抓取、文本清理,并通过 LLM 提取相关信息片段。
  • 并行文本过滤: 利用轻量级模型(如 Qwen3:0.6b)在独立线程中处理大文本,提高效率。
  • 报告拼接 (generate_narrative): 自动生成“问题—方案—风险防控”三段式结构化报告。
  • Web 界面模板 (index.html): 类 ChatGPT 风格的交互式研究前端,支持模型切换与历史记录。
  • 提示模板 (prompts.py): 澄清、初步分析、多轮检索及报告生成的系统与任务级提示。

3. 安装步骤

# 克隆仓库
git clone https://github.com/your-org/deep-research.git
cd deep-research

# 创建并激活虚拟环境
python3 -m venv venv
source venv/bin/activate

# 安装依赖
pip install -r requirements.txt
# 可选:安装句子嵌入库
pip install sentence-transformers

4. 配置指南

  1. LLM 模型: 在 deepresearch.pyMODELS 中配置 API Key 与模型端点。
  2. 检索引擎: 修改 search_mcp.py 中的 SEARXNG_URLSEARXNG_FALLBACKS
  3. 历史记录: research_history.json 会保存历史会话信息。

5. 使用示例

# 启动研究服务
python deepresearch.py

# 打开前端
o pen index.html

# 在 Python 代码中调用
from search_mcp import init_llm_client, generate_query, web_search, process_link
from deepresearch import run_research

client = LLMClient('gpt-4o')
init_llm_client(client)
research_id = run_research('跨境电子商务仲裁分析', 'gpt-4o')

6. 项目结构

├── deepresearch.py       # 核心流程与多线程实现
├── search_mcp.py         # 检索、查询生成、页面处理模块
├── prompts.py            # LLM 提示模板
├── index.html            # 前端界面模板
├── requirements.txt      # 依赖列表
└── research_data/        # 保存的研究报告与日志

7. 开源协议

本项目遵循 MIT 协议,欢迎自由使用与贡献。

Quick Start

1

Clone the repository

git clone https://github.com/liuivan615/deep-research
2

Install dependencies

cd deep-research
npm install
3

Follow the documentation

Check the repository's README.md file for specific installation and usage instructions.

Repository Details

Ownerliuivan615
Repodeep-research
LanguagePython
License-
Last fetched8/10/2025

Recommended MCP Servers

💬

Discord MCP

Enable AI assistants to seamlessly interact with Discord servers, channels, and messages.

integrationsdiscordchat
🔗

Knit MCP

Connect AI agents to 200+ SaaS applications and automate workflows.

integrationsautomationsaas
🕷️

Apify MCP Server

Deploy and interact with Apify actors for web scraping and data extraction.

apifycrawlerdata
🌐

BrowserStack MCP

BrowserStack MCP Server for automated testing across multiple browsers.

testingqabrowsers

Zapier MCP

A Zapier server that provides automation capabilities for various apps.

zapierautomation