
devdocs mcp
An MCP server inspired by devocs.io
Repository Info
About This Server
An MCP server inspired by devocs.io
Model Context Protocol (MCP) - This server can be integrated with AI applications to provide additional context and capabilities, enabling enhanced AI interactions and functionality.
Documentation
DevDocs MCP Implementation
A Model Context Protocol (MCP) implementation for documentation management and integration.
Project Structure
src/
├── resources/
│ ├── templates/ # Resource template system
│ └── managers/ # Resource management
├── documentation/
│ ├── processors/ # Documentation processing
│ └── integrators/ # Integration handlers
├── tasks/
│ ├── issues/ # Issue tracking
│ └── reviews/ # Review management
└── tests/
├── property/ # Property-based tests
└── integration/ # Integration tests
Core Components
Resource Template System
The resource template system provides URI-based access to documentation resources with:
- Type-safe parameter handling through Pydantic
- Flexible URI template matching
- Comprehensive error handling
- State management for resource lifecycle
Example usage:
from src.resources.templates.base import ResourceTemplate
# Create a template with parameter typing
template = ResourceTemplate(
uri_template='docs://api/{version}/endpoint',
parameter_types={'version': str}
)
# Extract and validate parameters
params = template.extract_parameters('docs://api/v1/endpoint')
template.validate_parameters(params)
Testing Strategy
The project uses property-based testing with Hypothesis to ensure:
- URI template validation
- Parameter extraction correctness
- Error handling robustness
- Type safety enforcement
Run tests:
pytest tests/property/test_templates.py
Implementation Progress
Completed
- Basic project structure
- Resource template system
- Property-based testing infrastructure
- URI validation and parameter extraction
- Error handling foundation
In Progress
- Documentation processor integration
- Caching layer implementation
- Task management system
- Performance optimization
Planned
- Search implementation
- Branch mapping system
- State tracking
- Monitoring system
Development Guidelines
-
Follow TDD approach:
- Write property-based tests first
- Implement minimal passing code
- Refactor for clarity and efficiency
-
Error Handling:
- Use structured error types
- Implement recovery strategies
- Maintain system stability
-
Documentation:
- Keep README updated
- Document new features
- Include usage examples
Branch Management
The project uses a branch-based development approach for:
- Feature tracking
- Documentation integration
- Task management
- Progress monitoring
Contributing
- Create feature branch
- Add property tests
- Implement feature
- Update documentation
- Submit pull request
Next Steps
- Implement documentation processor integration
- Add caching layer with proper lifecycle management
- Develop task management system
- Create monitoring and performance metrics
Support Resources
- MCP Concepts:
mcp-docs/docs/concepts/ - Python SDK:
python-sdk/src/mcp/ - Example Servers:
python-sdk/examples/servers/
Quick Start
Clone the repository
git clone https://github.com/llmian-space/devdocs-mcpInstall dependencies
cd devdocs-mcp
npm installFollow the documentation
Check the repository's README.md file for specific installation and usage instructions.
Repository Details
Recommended MCP Servers
Discord MCP
Enable AI assistants to seamlessly interact with Discord servers, channels, and messages.
Knit MCP
Connect AI agents to 200+ SaaS applications and automate workflows.
Apify MCP Server
Deploy and interact with Apify actors for web scraping and data extraction.
BrowserStack MCP
BrowserStack MCP Server for automated testing across multiple browsers.
Zapier MCP
A Zapier server that provides automation capabilities for various apps.