
sqlite anet mcp
SQLite-Anet-MCP Server A blazing-fast, Rust-powered SQLite server for AI agents—speak JSON-RPC, store insights, and manage your database like a pro.
Repository Info
About This Server
SQLite-Anet-MCP Server A blazing-fast, Rust-powered SQLite server for AI agents—speak JSON-RPC, store insights, and manage your database like a pro.
Model Context Protocol (MCP) - This server can be integrated with AI applications to provide additional context and capabilities, enabling enhanced AI interactions and functionality.
Documentation
SQLite-Anet-MCP Server
A Rust implementation of the Model Control Protocol (MCP) server that provides SQLite database capabilities via a standardized protocol. This server enables AI agents to create, manage, and query SQLite databases directly.
This project is based on the Model Context Protocol SQLite Server reference implementation.
Features
- 🗃️ Create and manage SQLite database tables
- 🔍 Execute SELECT queries for data retrieval
- ✏️ Execute INSERT, UPDATE, and DELETE queries for data manipulation
- 📊 Describe table schemas and list available tables
- 📝 Save and synthesize business insights from data
- 🔄 NATS transport layer for message passing
- 🛠️ JSON-RPC 2.0 compatible API
- ⚡ Asynchronous request handling with Tokio
Requirements
- Rust 1.70+
- NATS server running locally or accessible via network
- SQLite (included as a Rust dependency)
Installation
Clone the repository and build the server:
git clone https://github.com/yourusername/sqlite-anet-mcp.git
cd sqlite-anet-mcp
Configure your environment in a .env file:
NATS_URL=nats://localhost:4222
MCP_SUBJECT=mcp.requests
SQLITE_DB_PATH=./data/sqlite.db
RUST_LOG=debug
Getting Started
Running the Server
# Start a NATS server in another terminal or ensure one is already running
# Example:
nats-server
# Run the SQLite MCP server
cargo run
Testing the Server
You can test the server using the included test client:
cargo run --example test_client
This will set up a basic customer database and demonstrate the server's capabilities.
Chinook Database Test
To run the Chinook database test example:
cargo run --example chinook_test
Note: Before running the Chinook test, you need to:
- Download the Chinook SQLite database from: https://www.sqlitetutorial.net/sqlite-sample-database/
- Place the
chinook.dbfile in the./data/directory - Set
SQLITE_DB_PATH=./data/chinook.dbin your.envfile or when running the example
Available Tools
1. list_tables
List all tables in the SQLite database.
Example:
{
"name": "list_tables",
"arguments": {}
}
2. describe_table
Get the schema information for a specific table.
Parameters:
table_name(required): Name of the table to describe
Example:
{
"name": "describe_table",
"arguments": {
"table_name": "customers"
}
}
3. create_table
Create a new table in the SQLite database.
Parameters:
query(required): CREATE TABLE SQL statement
Example:
{
"name": "create_table",
"arguments": {
"query": "CREATE TABLE customers (id INTEGER PRIMARY KEY, name TEXT, email TEXT, join_date TEXT)"
}
}
4. read_query
Execute a SELECT query on the SQLite database.
Parameters:
query(required): SELECT SQL query to execute
Example:
{
"name": "read_query",
"arguments": {
"query": "SELECT * FROM customers WHERE join_date > '2023-01-01'"
}
}
5. write_query
Execute an INSERT, UPDATE, or DELETE query on the SQLite database.
Parameters:
query(required): SQL query to execute (must be INSERT, UPDATE, or DELETE)
Example:
{
"name": "write_query",
"arguments": {
"query": "INSERT INTO customers (name, email, join_date) VALUES ('John Doe', 'john@example.com', '2023-01-15')"
}
}
6. append_insight
Add a business insight to the memo.
Parameters:
insight(required): Business insight discovered from data analysis
Example:
{
"name": "append_insight",
"arguments": {
"insight": "Customer acquisition is stable and growing over time."
}
}
Available Resources
Business Insights Memo
A living document of discovered business insights.
URI: memo://insights
Example:
{
"method": "readResource",
"params": {
"uri": "memo://insights"
}
}
Available Prompts
MCP Demo
A prompt to seed the database with initial data and demonstrate what you can do with an SQLite MCP Server + Claude.
Arguments:
topic(required): Topic to seed the database with initial data
Example:
{
"method": "getPrompt",
"params": {
"name": "mcp-demo",
"arguments": {
"topic": "coffee shop sales"
}
}
}
Architecture
The server follows a modular design:
- tools – SQLite database operations implementations
- models – SQLite query and response structures
- prompts – Interactive demo templates
- resources – Business insights memo generation
- sqlite – Core database functionality
Development
Adding New Features
To extend the server with additional SQLite capabilities:
- Define response structures in
src/models/sqlite.rs - Implement the tool in
src/tools/following the Tool trait - Register the tool in
src/main.rs
Troubleshooting
- Ensure the NATS server is running and accessible
- Check that the SQLite database path is correctly set
- Verify the request format matches the expected input schema for each tool
License
MIT License
Acknowledgements
This project is built on top of the Anet MCP Server framework and is based on the Model Context Protocol SQLite Server reference implementation.
Quick Start
Clone the repository
git clone https://github.com/marekkucak/sqlite-anet-mcpInstall dependencies
cd sqlite-anet-mcp
npm installFollow the documentation
Check the repository's README.md file for specific installation and usage instructions.
Repository Details
Recommended MCP Servers
Discord MCP
Enable AI assistants to seamlessly interact with Discord servers, channels, and messages.
Knit MCP
Connect AI agents to 200+ SaaS applications and automate workflows.
Apify MCP Server
Deploy and interact with Apify actors for web scraping and data extraction.
BrowserStack MCP
BrowserStack MCP Server for automated testing across multiple browsers.
Zapier MCP
A Zapier server that provides automation capabilities for various apps.