mario-andreschak
MCP Servermario-andreschakpublic

mcp image recognition

An MCP server that provides image recognition 👀 capabilities using Anthropic and OpenAI vision APIs

Repository Info

23
Stars
7
Forks
23
Watchers
2
Issues
Python
Language
MIT License
License

About This Server

An MCP server that provides image recognition 👀 capabilities using Anthropic and OpenAI vision APIs

Model Context Protocol (MCP) - This server can be integrated with AI applications to provide additional context and capabilities, enabling enhanced AI interactions and functionality.

Documentation

MCP Image Recognition Server

An MCP server that provides image recognition capabilities using Anthropic and OpenAI vision APIs. Version 0.1.2.

Features

  • Image description using Anthropic Claude Vision or OpenAI GPT-4 Vision
  • Support for multiple image formats (JPEG, PNG, GIF, WebP)
  • Configurable primary and fallback providers
  • Base64 and file-based image input support
  • Optional text extraction using Tesseract OCR

Requirements

  • Python 3.8 or higher
  • Tesseract OCR (optional) - Required for text extraction feature
    • Windows: Download and install from UB-Mannheim/tesseract
    • Linux: sudo apt-get install tesseract-ocr
    • macOS: brew install tesseract

Installation

  1. Clone the repository:
git clone https://github.com/mario-andreschak/mcp-image-recognition.git
cd mcp-image-recognition
  1. Create and configure your environment file:
cp .env.example .env
# Edit .env with your API keys and preferences
  1. Build the project:
build.bat

Usage

Running the Server

Spawn the server using python:

python -m image_recognition_server.server

Start the server using batch instead:

run.bat server

Start the server in development mode with the MCP Inspector:

run.bat debug

Available Tools

  1. describe_image

    • Input: Base64-encoded image data and MIME type
    • Output: Detailed description of the image
  2. describe_image_from_file

    • Input: Path to an image file
    • Output: Detailed description of the image

Environment Configuration

  • ANTHROPIC_API_KEY: Your Anthropic API key.
  • OPENAI_API_KEY: Your OpenAI API key.
  • VISION_PROVIDER: Primary vision provider (anthropic or openai).
  • FALLBACK_PROVIDER: Optional fallback provider.
  • LOG_LEVEL: Logging level (DEBUG, INFO, WARNING, ERROR).
  • ENABLE_OCR: Enable Tesseract OCR text extraction (true or false).
  • TESSERACT_CMD: Optional custom path to Tesseract executable.
  • OPENAI_MODEL: OpenAI Model (default: gpt-4o-mini). Can use OpenRouter format for other models (e.g., anthropic/claude-3.5-sonnet:beta).
  • OPENAI_BASE_URL: Optional custom base URL for the OpenAI API. Set to https://openrouter.ai/api/v1 for OpenRouter.
  • OPENAI_TIMEOUT: Optional custom timeout (in seconds) for the OpenAI API.

Using OpenRouter

OpenRouter allows you to access various models using the OpenAI API format. To use OpenRouter, follow these steps:

  1. Obtain an OpenAI API key from OpenRouter.
  2. Set OPENAI_API_KEY in your .env file to your OpenRouter API key.
  3. Set OPENAI_BASE_URL to https://openrouter.ai/api/v1.
  4. Set OPENAI_MODEL to the desired model using the OpenRouter format (e.g., anthropic/claude-3.5-sonnet:beta).
  5. Set VISION_PROVIDER to openai.

Default Models

  • Anthropic: claude-3.5-sonnet-beta
  • OpenAI: gpt-4o-mini
  • OpenRouter: Use the anthropic/claude-3.5-sonnet:beta format in OPENAI_MODEL.

Development

Running Tests

Run all tests:

run.bat test

Run specific test suite:

run.bat test server
run.bat test anthropic
run.bat test openai

Docker Support

Build the Docker image:

docker build -t mcp-image-recognition .

Run the container:

docker run -it --env-file .env mcp-image-recognition

License

MIT License - see LICENSE file for details.

Release History

  • 0.1.2 (2025-02-20): Improved OCR error handling and added comprehensive test coverage for OCR functionality
  • 0.1.1 (2025-02-19): Added Tesseract OCR support for text extraction from images (optional feature)
  • 0.1.0 (2025-02-19): Initial release with Anthropic and OpenAI vision support

Quick Start

1

Clone the repository

git clone https://github.com/mario-andreschak/mcp-image-recognition
2

Install dependencies

cd mcp-image-recognition
npm install
3

Follow the documentation

Check the repository's README.md file for specific installation and usage instructions.

Repository Details

Ownermario-andreschak
Repomcp-image-recognition
LanguagePython
LicenseMIT License
Last fetched8/10/2025

Recommended MCP Servers

💬

Discord MCP

Enable AI assistants to seamlessly interact with Discord servers, channels, and messages.

integrationsdiscordchat
🔗

Knit MCP

Connect AI agents to 200+ SaaS applications and automate workflows.

integrationsautomationsaas
🕷️

Apify MCP Server

Deploy and interact with Apify actors for web scraping and data extraction.

apifycrawlerdata
🌐

BrowserStack MCP

BrowserStack MCP Server for automated testing across multiple browsers.

testingqabrowsers

Zapier MCP

A Zapier server that provides automation capabilities for various apps.

zapierautomation