mbaiza27
MCP Servermbaiza27public

mcp foundry devdocs

包含 Azure AI Agent MCP 服务器和 OpenAI API 文档处理工具的开发文档。

Repository Info

0
Stars
1
Forks
0
Watchers
2
Issues
Python
Language
-
License

About This Server

包含 Azure AI Agent MCP 服务器和 OpenAI API 文档处理工具的开发文档。

Model Context Protocol (MCP) - This server can be integrated with AI applications to provide additional context and capabilities, enabling enhanced AI interactions and functionality.

Documentation

MCP Foundry DevDocs

This repository contains tools for document processing and AI agent integration:

  1. Azure AI Agent MCP Server: A Model Context Protocol (MCP) server that integrates with Azure AI Agent Service
  2. OpenAI API Specification Processor: A utility to prepare OpenAI's API documentation for Retrieval Augmented Generation (RAG)

Azure AI Agent MCP Server

An MCP server that connects to Azure AI Agent Service, allowing VS Code extensions and other MCP clients to interact with Azure AI Agents.

Features

  • Connect to any agent in your Azure AI project
  • Query a default agent with a simpler interface
  • List all available agents
  • Format responses with proper Markdown including citations

Setup

  1. Create a virtual environment:

    python -m venv .venv
    source .venv/bin/activate  # On Windows: .venv\Scripts\activate
    
  2. Install dependencies:

    pip install -r requirements.txt
    
  3. Configure environment variables in .env:

    # Required for Azure AI Agent MCP Server
    PROJECT_CONNECTION_STRING=your_project_connection_string
    DEFAULT_AGENT_ID=your_default_agent_id
    
  4. The connection string format should be:

    [region].api.azureml.ms;[tenant_id];[project_name];[workspace_name]
    

Running the MCP Server

Start the server:

python -m azure_agent_mcp_server

Configuring in VS Code

Add the server to your VS Code settings.json:

"mcp": {
  "servers": {
    "azure-agent": {
      "command": "/path/to/your/.venv/bin/python",
      "args": [
        "-m",
        "azure_agent_mcp_server"
      ],
      "cwd": "/path/to/your/src",
      "env": {
        "PYTHONPATH": "/path/to/your/src",
        "PROJECT_CONNECTION_STRING": "your_connection_string",
        "DEFAULT_AGENT_ID": "your_default_agent_id"
      }
    }
  }
}

Available Tools

The MCP server provides these tools:

  • connect_agent: Connect to a specific Azure AI Agent using its ID
  • query_default_agent: Query the default agent specified in your configuration
  • list_agents: List all available agents in your Azure AI project

OpenAI API Specification Processor

A Python utility to fetch, process, and index the OpenAI API specification for RAG applications.

Overview

This tool:

  • Fetches the OpenAI API specification from GitHub
  • Processes it into searchable chunks
  • Uploads the chunks to Azure Blob Storage
  • Creates and configures an Azure AI Search index

Setup

Configure environment variables in .env (in addition to the Azure AI Agent variables):

# Azure Storage Account settings
AZURE_STORAGE_CONNECTION_STRING=your_storage_connection_string
AZURE_STORAGE_ACCOUNT_NAME=your_storage_account_name
AZURE_STORAGE_CONTAINER_NAME=your_container_name

# Azure AI Search settings
AZURE_SEARCH_SERVICE_ENDPOINT=https://your-service-name.search.windows.net
AZURE_SEARCH_API_KEY=your_search_api_key
AZURE_SEARCH_INDEX_NAME=your_index_name

# Optional OpenAI API key for embeddings
OPENAI_API_KEY=your_openai_api_key

Usage

Run the processor:

python src/openai_spec_processor.py

Command Line Options

  • --fetch-only: Only fetch the API spec
  • --process-only: Only process the API spec (no upload)
  • --upload-only: Only upload processed documents
  • --index-only: Only create/update the search index
  • --chunk-size: Size of content chunks (default: 1000)
  • --chunk-overlap: Overlap between chunks (default: 200)
  • --skip-embeddings: Skip generating embeddings
  • --test-query: Run a test query against the index

Example:

python src/openai_spec_processor.py --test-query "How do I use the completions API?"

Quick Start

1

Clone the repository

git clone https://github.com/mbaiza27/mcp-foundry-devdocs
2

Install dependencies

cd mcp-foundry-devdocs
npm install
3

Follow the documentation

Check the repository's README.md file for specific installation and usage instructions.

Repository Details

Ownermbaiza27
Repomcp-foundry-devdocs
LanguagePython
License-
Last fetched8/10/2025

Recommended MCP Servers

💬

Discord MCP

Enable AI assistants to seamlessly interact with Discord servers, channels, and messages.

integrationsdiscordchat
🔗

Knit MCP

Connect AI agents to 200+ SaaS applications and automate workflows.

integrationsautomationsaas
🕷️

Apify MCP Server

Deploy and interact with Apify actors for web scraping and data extraction.

apifycrawlerdata
🌐

BrowserStack MCP

BrowserStack MCP Server for automated testing across multiple browsers.

testingqabrowsers

Zapier MCP

A Zapier server that provides automation capabilities for various apps.

zapierautomation