
mcp foundry devdocs
包含 Azure AI Agent MCP 服务器和 OpenAI API 文档处理工具的开发文档。
Repository Info
About This Server
包含 Azure AI Agent MCP 服务器和 OpenAI API 文档处理工具的开发文档。
Model Context Protocol (MCP) - This server can be integrated with AI applications to provide additional context and capabilities, enabling enhanced AI interactions and functionality.
Documentation
MCP Foundry DevDocs
This repository contains tools for document processing and AI agent integration:
- Azure AI Agent MCP Server: A Model Context Protocol (MCP) server that integrates with Azure AI Agent Service
- OpenAI API Specification Processor: A utility to prepare OpenAI's API documentation for Retrieval Augmented Generation (RAG)
Azure AI Agent MCP Server
An MCP server that connects to Azure AI Agent Service, allowing VS Code extensions and other MCP clients to interact with Azure AI Agents.
Features
- Connect to any agent in your Azure AI project
- Query a default agent with a simpler interface
- List all available agents
- Format responses with proper Markdown including citations
Setup
-
Create a virtual environment:
python -m venv .venv source .venv/bin/activate # On Windows: .venv\Scripts\activate -
Install dependencies:
pip install -r requirements.txt -
Configure environment variables in
.env:# Required for Azure AI Agent MCP Server PROJECT_CONNECTION_STRING=your_project_connection_string DEFAULT_AGENT_ID=your_default_agent_id -
The connection string format should be:
[region].api.azureml.ms;[tenant_id];[project_name];[workspace_name]
Running the MCP Server
Start the server:
python -m azure_agent_mcp_server
Configuring in VS Code
Add the server to your VS Code settings.json:
"mcp": {
"servers": {
"azure-agent": {
"command": "/path/to/your/.venv/bin/python",
"args": [
"-m",
"azure_agent_mcp_server"
],
"cwd": "/path/to/your/src",
"env": {
"PYTHONPATH": "/path/to/your/src",
"PROJECT_CONNECTION_STRING": "your_connection_string",
"DEFAULT_AGENT_ID": "your_default_agent_id"
}
}
}
}
Available Tools
The MCP server provides these tools:
connect_agent: Connect to a specific Azure AI Agent using its IDquery_default_agent: Query the default agent specified in your configurationlist_agents: List all available agents in your Azure AI project
OpenAI API Specification Processor
A Python utility to fetch, process, and index the OpenAI API specification for RAG applications.
Overview
This tool:
- Fetches the OpenAI API specification from GitHub
- Processes it into searchable chunks
- Uploads the chunks to Azure Blob Storage
- Creates and configures an Azure AI Search index
Setup
Configure environment variables in .env (in addition to the Azure AI Agent variables):
# Azure Storage Account settings
AZURE_STORAGE_CONNECTION_STRING=your_storage_connection_string
AZURE_STORAGE_ACCOUNT_NAME=your_storage_account_name
AZURE_STORAGE_CONTAINER_NAME=your_container_name
# Azure AI Search settings
AZURE_SEARCH_SERVICE_ENDPOINT=https://your-service-name.search.windows.net
AZURE_SEARCH_API_KEY=your_search_api_key
AZURE_SEARCH_INDEX_NAME=your_index_name
# Optional OpenAI API key for embeddings
OPENAI_API_KEY=your_openai_api_key
Usage
Run the processor:
python src/openai_spec_processor.py
Command Line Options
--fetch-only: Only fetch the API spec--process-only: Only process the API spec (no upload)--upload-only: Only upload processed documents--index-only: Only create/update the search index--chunk-size: Size of content chunks (default: 1000)--chunk-overlap: Overlap between chunks (default: 200)--skip-embeddings: Skip generating embeddings--test-query: Run a test query against the index
Example:
python src/openai_spec_processor.py --test-query "How do I use the completions API?"
Quick Start
Clone the repository
git clone https://github.com/mbaiza27/mcp-foundry-devdocsInstall dependencies
cd mcp-foundry-devdocs
npm installFollow the documentation
Check the repository's README.md file for specific installation and usage instructions.
Repository Details
Recommended MCP Servers
Discord MCP
Enable AI assistants to seamlessly interact with Discord servers, channels, and messages.
Knit MCP
Connect AI agents to 200+ SaaS applications and automate workflows.
Apify MCP Server
Deploy and interact with Apify actors for web scraping and data extraction.
BrowserStack MCP
BrowserStack MCP Server for automated testing across multiple browsers.
Zapier MCP
A Zapier server that provides automation capabilities for various apps.