micha-gh
MCP Servermicha-ghpublic

rule intelligence mcp

Rule Intelligence MCP-Tool (Node.js + TypeScript) to analyze, validate and manage rulebases with simple CLI handling

Repository Info

0
Stars
0
Forks
0
Watchers
0
Issues
JavaScript
Language
MIT License
License

About This Server

Rule Intelligence MCP-Tool (Node.js + TypeScript) to analyze, validate and manage rulebases with simple CLI handling

Model Context Protocol (MCP) - This server can be integrated with AI applications to provide additional context and capabilities, enabling enhanced AI interactions and functionality.

Documentation

Rule Intelligence MCP – Universal Rulebase Analyzer

Build Status License: MIT Coverage Status

Author: Michael Tittmar


What is Rule Intelligence MCP?

Rule Intelligence MCP is a flexible open-source CLI & library to analyze, validate, and manage any kind of rulebase – for any language, team, or workflow. It supports multiple formats, custom checks (plugins), AI integration, and more.


Features

  • Rulebase Analysis: Find missing categories, duplicate rules, empty content, and other issues in your rules. Example: Detect if a coding guideline is missing a category or if two rules have the same title.
  • Schema Validation: Check your rules against any JSON schema to ensure consistency and completeness. Example: Enforce that every rule has an id, title, and category.
  • Flexible Filtering: Filter rules by status (e.g. active, deprecated), tags, or custom fields. Example: List only active security rules for a release checklist.
  • Multiple Output Formats: Export results as JSON (for automation), Markdown (for docs), CSV (for Excel), or HTML (for reports). Example: Generate a Markdown summary for your team wiki.
  • Interactive Editing: Edit rules directly from the CLI, e.g. update a title or category without opening a text editor.
  • Memory Bank (Change History): All edits and suggestions are logged with timestamps. Example: Track who changed what and when.
  • AI Integration (LLM): Get suggestions for new or improved rules from AI models like OpenAI GPT. Example: "Suggest 3 new security rules for my project."
  • Live Watch Mode: Automatically re-analyze your rulebase when files change. Example: Get instant feedback while editing.
  • Plugin System: Write your own checks/analysis in JavaScript. Example: Plugin that finds conflicting rules.
  • Flexible Input: Supports JSON, YAML, TOML, and Markdown (frontmatter). Example: Use the tool for rules in code, docs, or config files.
  • Tested & CI-ready: Includes unit and integration tests, ideal for CI pipelines to enforce rule quality before merging code.

Quickstart

Prerequisites

  • Node.js ≥ 14
  • npm or yarn

Installation

git clone https://github.com/micha-gh/rule-intelligence-mcp.git
cd rule-intelligence-mcp
npm install

Usage

CLI Usage

rule-intelligence-mcp <command> [options]

Common CLI Options

OptionDescriptionExample
-r, --rulebasePath to rulebase file (JSON/YAML/TOML/MD)-r rules.json
-s, --schemaPath to JSON schema file-s my-schema.json
--format-inInput format: json, yaml, toml, md (usually auto-detected)--format-in yaml
-o, --outputOutput format: json, md, csv, html--output csv
--statusFilter rules by status--status active
--tagFilter by tags (comma-separated)--tag security,style
--pluginPath to JS plugin for custom checks--plugin ./plugins/my-check.js
--llm-providerLLM provider (openai, azure, local, ...)--llm-provider openai
--llm-api-urlLLM API base URL (for custom providers)--llm-api-url https://api.example.com
--llm-modelLLM model name--llm-model gpt-4
--memoryPath to memory bank file--memory .data/mem.json

Example Commands

# Analyze a rulebase (format usually auto-detected)
rule-intelligence-mcp analyze -r myrules.json --output md
rule-intelligence-mcp analyze -r myrules.yaml --format-in yaml --output csv
rule-intelligence-mcp analyze -r myrules.json --plugin ./plugins/example-plugin.js --output json

# Edit a rule
rule-intelligence-mcp edit rule-2 --title "Use parameterized queries"

# Show memory bank
rule-intelligence-mcp memory:list --memory .data/mem.json

# AI suggestions (optional, install openai first)
npm install openai
rule-intelligence-mcp suggest -r myrules.json --llm-provider openai --llm-model gpt-3.5-turbo

# Watch mode (optional, install chokidar first)
npm install chokidar
rule-intelligence-mcp watch -r myrules.json

Advanced Usage

Flexible Schema & Rulebase Format

  • Use any JSON schema for validation (--schema my-schema.json)
  • Rulebases can be JSON, YAML, TOML, or Markdown (with frontmatter)
  • Format is usually auto-detected, but can be set with --format-in
  • YAML example:
    rule-intelligence-mcp analyze -r rules.yaml --format-in yaml
    
  • Markdown example:
    rule-intelligence-mcp analyze -r rules.md --format-in md
    

Output Formats

  • --output json (default, for automation)
  • --output md (Markdown, for docs)
  • --output csv (Excel/tables)
  • --output html (reports)

Plugins: Custom Checks & Analysis

  • Write your own checks as a JS file: --plugin ./my-check.js
  • The plugin receives the rulebase and the current analysis result as input and returns an object to merge into the output
  • See plugins/example-plugin.js as a template
  • Example: Count deprecated rules and add the result

LLM Provider (AI) Configuration

  • Use any LLM provider: OpenAI, Azure, local, etc.
  • Flags: --llm-provider, --llm-api-url, --llm-model
  • Example: rule-intelligence-mcp suggest --llm-provider openai --llm-model gpt-4
  • Install required packages first (see docs)
  • Set API keys as environment variables (e.g. OPENAI_API_KEY)

Memory Bank

  • Stores all edit and suggest interactions with timestamps
  • Location and backend are configurable (--memory memory.json, --memory .data/mem.json)
  • Manage with memory:list and memory:clear

Testing & Continuous Integration

  • Run all tests: npm test
  • Coverage: npm test -- --coverage
  • GitHub Actions workflow in .github/workflows/ci.yml

Examples & Test Data

  • The examples/ folder contains various rulebases (minimal, complex, invalid, markdown)
  • The plugins/ folder contains example plugins
  • The test/ folder contains test scripts for positive and negative cases

Run automated tests:

bash test/examples.test.sh
bash test/examples.error.test.sh

Test matrix and notes can be found further down in the README.


Integration

Integration with Cursor AI

You can use Rule Intelligence MCP as a Custom Tool in Cursor AI. This allows you to analyze and validate rulebases directly from your IDE.

Step-by-step guide: docs/cursor-integration.md


Project Meta

How to contribute

Want to help? See CONTRIBUTING.md for how to open issues, submit PRs, and coding guidelines.

Code of Conduct

Please read and follow our Code of Conduct.

Changelog

See CHANGELOG.md for release notes and version history.

License

MIT © Michael Tittmar

Quick Start

1

Clone the repository

git clone https://github.com/micha-gh/rule-intelligence-mcp
2

Install dependencies

cd rule-intelligence-mcp
npm install
3

Follow the documentation

Check the repository's README.md file for specific installation and usage instructions.

Repository Details

Ownermicha-gh
Reporule-intelligence-mcp
LanguageJavaScript
LicenseMIT License
Last fetched8/10/2025

Recommended MCP Servers

💬

Discord MCP

Enable AI assistants to seamlessly interact with Discord servers, channels, and messages.

integrationsdiscordchat
🔗

Knit MCP

Connect AI agents to 200+ SaaS applications and automate workflows.

integrationsautomationsaas
🕷️

Apify MCP Server

Deploy and interact with Apify actors for web scraping and data extraction.

apifycrawlerdata
🌐

BrowserStack MCP

BrowserStack MCP Server for automated testing across multiple browsers.

testingqabrowsers

Zapier MCP

A Zapier server that provides automation capabilities for various apps.

zapierautomation