moritalous
MCP Servermoritalouspublic

bedrock mcp streamlit

一个使用 Streamlit 构建的聊天应用,集成 MCP 工具和 Bedrock 模型。

Repository Info

10
Stars
2
Forks
10
Watchers
0
Issues
Python
Language
MIT License
License

About This Server

一个使用 Streamlit 构建的聊天应用,集成 MCP 工具和 Bedrock 模型。

Model Context Protocol (MCP) - This server can be integrated with AI applications to provide additional context and capabilities, enabling enhanced AI interactions and functionality.

Documentation

Bedrock Chat with MCP tool

This is a chat application built with Streamlit and integrated with the MCP (Model Context Protocol) tool.

Overview

Bedrock Chat with MCP tool is a chat application built with Streamlit and integrated with the MCP (Model Context Protocol) tool.

This application uses Langchain and Bedrock to create a chat model and uses the model specified in config.json as a parameter in Langchain's init_chat_model function (https://python.langchain.com/docs/how_to/chat_models_universal_init/). It interacts with the MCP (Model Context Protocol) server defined in mcp_config.json and accesses various tools. MCP is an open protocol that standardizes how applications provide context to LLM (https://modelcontextprotocol.io/). Chat history is stored in a YAML file. The util.py module defines MessageProcessor and its subclasses to handle message processing using different models.

The config.json file allows you to configure the LLM model to use, where the chat history files are stored, etc. The mcp_config.json file describes the configuration of the MCP server.

In the Streamlit sidebar, you can configure the following:

  • Select LLM model
  • Change chat history directory
  • Change MCP configuration file
  • Select past chat history

Features

  • Chat interface using Streamlit
  • Integration with MCP tools
  • Use Langchain and Bedrock for chat model
  • LLM model etc. can be configured in config.json
  • MCP tool integration
  • Use Langchain and Bedrock
  • Read MCP server settings from mcp_config.json
  • Save chat history in YAML format
  • Can change settings from Streamlit sidebar

Setup

  1. Install dependencies:

    pip install streamlit langchain langchain-aws langchain_mcp_adapters
    
  2. Configure MCP server in mcp_config.json.

  3. Run the application.

    streamlit run src/main.py
    

Configuration

The config.json file is where you configure the LLM model and other settings.

{
  "chat_history_dir": "chat_history",
  "mcp_config_file": "mcp_config.json",
  "models": {
    "Claude 3.7 Sonnet": {
      "model_provider": "bedrock_converse",
      "model": "us.anthropic.claude-3-7-sonnet-20250219-v1:0"
    },
    "Amazon Nova Pro": {
      "model_provider": "bedrock_converse",
      "model": "us.amazon.nova-pro-v1:0"
    },
  },
}

The mcp_config.json file contains the settings for the MCP server.

Please note that transport is required.

{
  "mcpServers": {
    "server1": {
      "command": "...",
      "args": ["..."],
      "env": {
        "API_KEY": "..."
      },
      "transport": "..."
    }
  }
}

Usage

To run the Streamlit application, run the following command.

streamlit run src/main.py

Once the application is running, enter a message in the chat input box. After sending, the chat model and MCP tool will generate a response.

In the sidebar, you can configure the LLM model, chat history directory, and MCP config file. You can also select past chat history and resume the conversation.

Notes

  • Write the MCP server configuration in mcp_config.json.
  • To use Bedrock, you need an AWS account.
  • Chat history is stored in a YAML file.
  • config.json and mcp_config.json must be in the same directory as your application.

Quick Start

1

Clone the repository

git clone https://github.com/moritalous/bedrock-mcp-streamlit
2

Install dependencies

cd bedrock-mcp-streamlit
npm install
3

Follow the documentation

Check the repository's README.md file for specific installation and usage instructions.

Repository Details

Ownermoritalous
Repobedrock-mcp-streamlit
LanguagePython
LicenseMIT License
Last fetched8/10/2025

Recommended MCP Servers

💬

Discord MCP

Enable AI assistants to seamlessly interact with Discord servers, channels, and messages.

integrationsdiscordchat
🔗

Knit MCP

Connect AI agents to 200+ SaaS applications and automate workflows.

integrationsautomationsaas
🕷️

Apify MCP Server

Deploy and interact with Apify actors for web scraping and data extraction.

apifycrawlerdata
🌐

BrowserStack MCP

BrowserStack MCP Server for automated testing across multiple browsers.

testingqabrowsers

Zapier MCP

A Zapier server that provides automation capabilities for various apps.

zapierautomation