nisarg-baxi
MCP Servernisarg-baxipublic

multi agent communication

This repository is for establishing a Agent-verse, Connecting a world of different agents.

Repository Info

0
Stars
0
Forks
0
Watchers
0
Issues
Python
Language
-
License

About This Server

This repository is for establishing a Agent-verse, Connecting a world of different agents.

Model Context Protocol (MCP) - This server can be integrated with AI applications to provide additional context and capabilities, enabling enhanced AI interactions and functionality.

Documentation

Multi-Agent Communication System

A robust multi-agent system for trip planning using ZeroMQ (ZMQ) and the Multi-Agent Communication Protocol (MCP).

Features

  • Modern Architecture: Built with ZeroMQ for efficient inter-process communication
  • Protocol-Based Communication: Implements MCP (Multi-Agent Communication Protocol) for structured agent interactions
  • Specialized Agents:
    • Planner Agent: Coordinates trip planning and manages requests
    • Travel Agent: Provides travel options and handles bookings
    • Hotel Agent: Manages hotel options and reservations
  • Conversation Tracking: Maintains conversation history and context
  • Error Handling: Robust error handling and logging
  • Asynchronous Operations: Built with asyncio for non-blocking operations

Prerequisites

  • Python 3.8+
  • ZeroMQ (pyzmq)
  • Apple Silicon compatible (M1/M2/M3)

Installation

  1. Clone the repository:
git clone https://github.com/yourusername/multi-agent-communication.git
cd multi-agent-communication
  1. Create and activate a virtual environment:
python -m venv venv
source venv/bin/activate  # On Windows: venv\Scripts\activate
  1. Install dependencies:
pip install -r requirements.txt

Usage

  1. Start the agents:
python main.py
  1. Send a trip request:
import zmq
import json
from agents.mcp_message import MCPMessage, MCPPerformatives

# Create ZMQ context and socket
context = zmq.Context()
socket = context.socket(zmq.PAIR)
socket.connect("tcp://localhost:5555")  # Connect to planner agent

# Create trip request
request = MCPMessage(
    performative=MCPPerformatives.REQUEST,
    content=json.dumps({
        "trip_id": "TRIP-001",
        "destination": "Goa",
        "dates": {
            "check_in": "2024-04-01",
            "check_out": "2024-04-07"
        }
    }),
    sender="client",
    receiver="planner"
)

# Send request
socket.send_json(request.to_json())

Agent Communication Protocol (MCP)

The system uses a structured communication protocol with the following performatives:

  • REQUEST: Initial request for action
  • INFORM: Provide information
  • QUERY: Ask for information
  • RESPONSE: Response to query
  • PROPOSE: Propose a solution
  • ACCEPT: Accept a proposal
  • REJECT: Reject a proposal
  • FAILURE: Report failure
  • CFP: Call for proposals
  • CONFIRM: Confirm an action
  • DISCONFIRM: Disconfirm an action

Message Format

{
  "protocol": "MCP-1.0",
  "performative": "REQUEST",
  "content": "message content",
  "sender": "agent_id",
  "receiver": "target_agent_id",
  "conversation_id": "uuid",
  "timestamp": "ISO-8601 timestamp"
}

Project Structure

multi-agent-communication/
├── agents/
│   ├── __init__.py
│   ├── base_agent.py      # Base agent implementation
│   ├── planner_agent.py   # Trip planning coordinator
│   ├── travel_agent.py    # Travel options provider
│   ├── hotel_agent.py     # Hotel options provider
│   └── mcp_message.py     # MCP message implementation
├── config.py              # Configuration settings
├── main.py               # Application entry point
├── requirements.txt      # Project dependencies
└── README.md            # Project documentation

Supported Destinations

Currently supported destinations with pre-configured options:

Goa

  • Travel Options:
    • Air India Flight (₹5000, 2h)
    • Konkan Express Train (₹2000, 12h)
    • Luxury AC Bus (₹1500, 14h)
  • Hotel Options:
    • Taj Exotica (Luxury, ₹15000/night)
    • Holiday Inn (Mid-range, ₹8000/night)
    • Beach Resort (Budget, ₹4000/night)

Mumbai

  • Travel Options:
    • IndiGo Flight (₹4000, 1.5h)
    • Rajdhani Express Train (₹1800, 10h)
    • Deluxe Bus (₹1200, 12h)
  • Hotel Options:
    • Taj Mahal Palace (Luxury, ₹20000/night)
    • Grand Hyatt (Luxury, ₹18000/night)
    • Comfort Inn (Mid-range, ₹6000/night)

Contributing

  1. Fork the repository
  2. Create a feature branch
  3. Commit your changes
  4. Push to the branch
  5. Create a Pull Request

License

This project is licensed under the MIT License - see the LICENSE file for details.

Acknowledgments

  • ZeroMQ for the communication framework
  • Python asyncio for asynchronous operations
  • The multi-agent systems community for inspiration

Quick Start

1

Clone the repository

git clone https://github.com/nisarg-baxi/multi-agent-communication
2

Install dependencies

cd multi-agent-communication
npm install
3

Follow the documentation

Check the repository's README.md file for specific installation and usage instructions.

Repository Details

Ownernisarg-baxi
Repomulti-agent-communication
LanguagePython
License-
Last fetched8/10/2025

Recommended MCP Servers

💬

Discord MCP

Enable AI assistants to seamlessly interact with Discord servers, channels, and messages.

integrationsdiscordchat
🔗

Knit MCP

Connect AI agents to 200+ SaaS applications and automate workflows.

integrationsautomationsaas
🕷️

Apify MCP Server

Deploy and interact with Apify actors for web scraping and data extraction.

apifycrawlerdata
🌐

BrowserStack MCP

BrowserStack MCP Server for automated testing across multiple browsers.

testingqabrowsers

Zapier MCP

A Zapier server that provides automation capabilities for various apps.

zapierautomation