
shannon thinking
MCP server for applying a Claude Shannon-inspired problem-solving pattern
Repository Info
About This Server
MCP server for applying a Claude Shannon-inspired problem-solving pattern
Model Context Protocol (MCP) - This server can be integrated with AI applications to provide additional context and capabilities, enabling enhanced AI interactions and functionality.
Documentation
shannon-thinking
An MCP server demonstrating Claude Shannon's systematic problem-solving methodology. This server provides a tool that helps break down complex problems into structured thoughts following Shannon's approach of problem definition, mathematical modeling, and practical implementation.
Overview
Claude Shannon, known as the father of information theory, approached complex problems through a systematic methodology:
- Problem Definition: Strip the problem to its fundamental elements
- Constraints: Identify system limitations and boundaries
- Model: Develop mathematical/theoretical frameworks
- Proof/Validation: Validate through formal proofs or experimental testing
- Implementation/Experiment: Design and test practical solutions
This MCP server demonstrates this methodology as a tool that helps guide systematic problem-solving through these stages.
Installation
NPX
{
"mcpServers": {
"shannon-thinking": {
"command": "npx",
"args": [
"-y",
"server-shannon-thinking@latest"
]
}
}
}
Usage
The server provides a single tool named shannonthinking that structures problem-solving thoughts according to Shannon's methodology.
Each thought must include:
- The actual thought content
- Type (problem_definition/constraints/model/proof/implementation)
- Thought number and total thoughts estimate
- Confidence level (uncertainty: 0-1)
- Dependencies on previous thoughts
- Explicit assumptions
- Whether another thought step is needed
Additional capabilities:
- Revision: Thoughts can revise earlier steps as understanding evolves
- Recheck: Mark steps that need re-examination with new information
- Experimental Validation: Support for empirical testing alongside formal proofs
- Implementation Notes: Practical constraints and proposed solutions
Example Usage
const thought = {
thought: "The core problem can be defined as an information flow optimization",
thoughtType: "problem_definition",
thoughtNumber: 1,
totalThoughts: 5,
uncertainty: 0.2,
dependencies: [],
assumptions: ["System has finite capacity", "Information flow is continuous"],
nextThoughtNeeded: true,
// Optional: Mark as revision of earlier definition
isRevision: false,
// Optional: Indicate step needs recheck
recheckStep: {
stepToRecheck: "constraints",
reason: "New capacity limitations discovered",
newInformation: "System shows non-linear scaling"
}
};
// Use with MCP client
const result = await client.callTool("shannonthinking", thought);
Features
- Iterative Problem-Solving: Supports revisions and rechecks as understanding evolves
- Flexible Validation: Combines formal proofs with experimental validation
- Dependency Tracking: Explicitly tracks how thoughts build upon previous ones
- Assumption Management: Requires clear documentation of assumptions
- Confidence Levels: Quantifies uncertainty in each step
- Rich Feedback: Formatted console output with color-coding, symbols, and validation results
Development
# Install dependencies
npm install
# Build
npm run build
# Run tests
npm test
# Watch mode during development
npm run watch
Tool Schema
The tool accepts thoughts with the following structure:
interface ShannonThought {
thought: string;
thoughtType: "problem_definition" | "constraints" | "model" | "proof" | "implementation";
thoughtNumber: number;
totalThoughts: number;
uncertainty: number; // 0-1
dependencies: number[];
assumptions: string[];
nextThoughtNeeded: boolean;
// Optional revision fields
isRevision?: boolean;
revisesThought?: number;
// Optional recheck field
recheckStep?: {
stepToRecheck: ThoughtType;
reason: string;
newInformation?: string;
};
// Optional validation fields
proofElements?: {
hypothesis: string;
validation: string;
};
experimentalElements?: {
testDescription: string;
results: string;
confidence: number; // 0-1
limitations: string[];
};
// Optional implementation fields
implementationNotes?: {
practicalConstraints: string[];
proposedSolution: string;
};
}
When to Use
This thinking pattern is particularly valuable for:
- Complex system analysis
- Information processing problems
- Engineering design challenges
- Problems requiring theoretical frameworks
- Optimization problems
- Systems requiring practical implementation
- Problems that need iterative refinement
- Cases where experimental validation complements theory
Quick Start
Clone the repository
git clone https://github.com/olaservo/shannon-thinkingInstall dependencies
cd shannon-thinking
npm installFollow the documentation
Check the repository's README.md file for specific installation and usage instructions.
Repository Details
Recommended MCP Servers
Discord MCP
Enable AI assistants to seamlessly interact with Discord servers, channels, and messages.
Knit MCP
Connect AI agents to 200+ SaaS applications and automate workflows.
Apify MCP Server
Deploy and interact with Apify actors for web scraping and data extraction.
BrowserStack MCP
BrowserStack MCP Server for automated testing across multiple browsers.
Zapier MCP
A Zapier server that provides automation capabilities for various apps.