
confluence mcp server
Confluence MCP server providing API tools for Atlassian Confluence operations including page management, space handling, and content search with built-in rate limiting and error handling.
Repository Info
About This Server
Confluence MCP server providing API tools for Atlassian Confluence operations including page management, space handling, and content search with built-in rate limiting and error handling.
Model Context Protocol (MCP) - This server can be integrated with AI applications to provide additional context and capabilities, enabling enhanced AI interactions and functionality.
Documentation
Confluence MCP Server
A Model Context Protocol (MCP) server implementation for Atlassian Confluence. This server provides a set of tools for interacting with Confluence through the MCP protocol, allowing AI agents to seamlessly work with Confluence content. Built with Flask for easy deployment to Cloud Run.
Features
- Search pages and spaces using Confluence Query Language (CQL)
- List all available Confluence spaces
- Create, read, update, and delete Confluence pages
- Rich metadata support for Confluence resources
- Flask-based server for Cloud Run deployment
- MCP tools for AI agent integration
Installation
- Clone the repository
- Install dependencies:
pip install -r requirements.txt
Configuration
Create a .env file in the project root with the following variables:
CONFLUENCE_URL=https://your-instance.atlassian.net/wiki
CONFLUENCE_ACCESS_TOKEN=your_access_token
PORT=8080 # Optional, defaults to 8080
To get an access token:
- Log in to your Atlassian account
- Go to Account Settings > Security > Create and manage API tokens
- Create a new API token and copy it
Available Tools
The server provides the following MCP tools:
1. Search Content
@tool("search_confluence")
def search(query: str) -> Dict[str, Any]
2. Get Spaces
@tool("get_spaces")
def get_spaces() -> Dict[str, Any]
3. Get Page Content
@tool("get_page_content")
def get_page_content(space_key: str, page_id: str) -> Dict[str, Any]
4. Create Page
@tool("create_page")
def create_page(space_key: str, title: str, content: str) -> Dict[str, Any]
5. Update Page
@tool("update_page")
def update_page(space_key: str, page_id: str, content: str) -> Dict[str, Any]
6. Delete Page
@tool("delete_page")
def delete_page(space_key: str, page_id: str) -> Dict[str, Any]
Running Locally
Run the server locally:
python example.py
The server will start on http://localhost:8080
Cloud Run Deployment
- Build the Docker image:
docker build -t confluence-mcp .
- Tag and push to Google Container Registry:
docker tag confluence-mcp gcr.io/[PROJECT-ID]/confluence-mcp
docker push gcr.io/[PROJECT-ID]/confluence-mcp
- Deploy to Cloud Run:
gcloud run deploy confluence-mcp \
--image gcr.io/[PROJECT-ID]/confluence-mcp \
--platform managed \
--allow-unauthenticated \
--set-env-vars="CONFLUENCE_URL=[YOUR_URL],CONFLUENCE_ACCESS_TOKEN=[YOUR_TOKEN]"
Error Handling
All tools include proper error handling and will return appropriate error messages in the response. The response format includes:
- Success case: Relevant data in the specified format
- Error case:
{"error": "error message"}
Security Considerations
- Always use environment variables for sensitive data
- Consider using Cloud Run's built-in secret management
- Implement proper authentication for your endpoints
- Keep your Confluence access token secure
Contributing
Contributions are welcome! Please feel free to submit a Pull Request.
License
This project is licensed under the MIT License - see the LICENSE file for details.
Quick Start
Clone the repository
git clone https://github.com/pawankumar94/confluence-mcp-serverInstall dependencies
cd confluence-mcp-server
npm installFollow the documentation
Check the repository's README.md file for specific installation and usage instructions.
Repository Details
Recommended MCP Servers
Discord MCP
Enable AI assistants to seamlessly interact with Discord servers, channels, and messages.
Knit MCP
Connect AI agents to 200+ SaaS applications and automate workflows.
Apify MCP Server
Deploy and interact with Apify actors for web scraping and data extraction.
BrowserStack MCP
BrowserStack MCP Server for automated testing across multiple browsers.
Zapier MCP
A Zapier server that provides automation capabilities for various apps.