
agentverse mcp integration
用于在 Agentverse 生态系统中构建和部署基于模型上下文协议 (MCP) 的 AI 代理的框架。
Repository Info
About This Server
用于在 Agentverse 生态系统中构建和部署基于模型上下文协议 (MCP) 的 AI 代理的框架。
Model Context Protocol (MCP) - This server can be integrated with AI applications to provide additional context and capabilities, enabling enhanced AI interactions and functionality.
Documentation
agentverse-mcp-integration
A framework for building and deploying AI agents with Model Context Protocol (MCP) on the agentverse ecosystem.
Overview
This library enables developers to:
- Build MCP Servers: Create powerful MCP servers using the FastMCP pattern with decorator-based tool definitions
- Deploy on Agentverse: Make your agents discoverable and accessible on the agentverse ecosystem
- ASI:One Integration: Enable your agents to be discovered and used on ASI:One
- Claude Desktop Integration: Connect your agents to Claude Desktop for seamless tool usage
Key Features
- FastMCP Pattern: Simple decorator-based approach to defining tools
- uAgent Integration: Built on the uAgent framework for robust agent communication
- Bridge & Proxy: Complete solution for connecting Claude Desktop to your agents
- Real API Integration: Example implementation with National Weather Service API
Installation
# Install from the local directory
pip install -e .
Quick Start
1. Create Your FastMCP Server
# server.py
from typing import Dict, Any
class FastMCP:
def __init__(self, name):
self.name = name
self.tools = {}
def tool(self):
def decorator(func):
# Tool registration logic
self.tools[func.__name__] = {"func": func}
return func
return decorator
async def list_tools(self):
# Return list of tools
return []
async def call_tool(self, tool_name, args):
# Call the requested tool
return await self.tools[tool_name]"func"
# Initialize server
mcp = FastMCP("my_agent")
@mcp.tool()
async def hello_world(name: str) -> Dict[str, Any]:
"""Say hello to someone.
name: Person's name
"""
return {"message": f"Hello, {name}!"}
2. Create Your FastMCP Agent
# agent.py
import os
import sys
import logging
from uagents import Agent
# Add parent directory to path
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
from uagent_mcp import FastMCPAdapter
from server import mcp
# Create agent
agent = Agent(name="my_agent", port=8003, mailbox=True)
# Create adapter
adapter = FastMCPAdapter(mcp_server=mcp, name="my_adapter")
# Register adapter with agent
adapter.register_with_agent(agent)
# Run agent
adapter.run(agent)
3. Set Up Bridge & Proxy for Claude Desktop
Use the provided bridge.py and new_proxy.py examples to connect your agent to Claude Desktop.
Components
Protocol Models
The library defines protocol models for MCP communication:
ListTools: Request to list available toolsListToolsResponse: Response containing available tools or errorCallTool: Request to call a specific tool with argumentsCallToolResponse: Response from a tool call containing result or error
FastMCP Server
The FastMCP server is the core component that defines tools using a decorator pattern:
from typing import Dict, Any
# Initialize FastMCP server
mcp = FastMCP("weather")
@mcp.tool()
async def get_weather(location: str) -> Dict[str, Any]:
"""Get current weather for a location.
location: City name or location
"""
# Implementation to fetch weather data
# ...
return {
"location": location,
"temperature": 72,
"condition": "Sunny"
}
FastMCP Adapter
The FastMCPAdapter connects your FastMCP server to the uAgent framework:
from uagent_mcp import FastMCPAdapter
from uagents import Agent
# Create the agent
agent = Agent(
name="weather_agent",
port=8003,
mailbox=True
)
# Create the adapter
adapter = FastMCPAdapter(mcp_server=mcp, name="weather_adapter")
# Register the adapter with the agent
adapter.register_with_agent(agent)
# Run the agent
adapter.run(agent)
Bridge & Proxy
The bridge and proxy components connect Claude Desktop to your FastMCP agent:
# In bridge.py
from uagent_mcp.protocol import ListTools, ListToolsResponse, CallTool, CallToolResponse
# Create the bridge
bridge = Bridge(
agent_address="agent1qw2e3r4t5y6u7i8o9p0...",
port=8080
)
# Start the JSON-RPC server
bridge.start_server()
# In new_proxy.py
# Handle MCP handshake and format responses for Claude
proxy = Proxy(bridge_url="http://localhost:8080/jsonrpc")
proxy.start()
Deployment & Integration
Agentverse Deployment
To deploy your FastMCP agent on the agentverse ecosystem:
- Package your FastMCP server and agent code
- Deploy to a server with a public endpoint
- Register your agent's address in the agentverse directory
# Example deployment command
python deploy_to_agentverse.py --agent-address agent1qw2e3r4t5y6u7i8o9p0... --endpoint https://your-server.com/agent
ASI:One Integration
To make your agent discoverable on ASI:One:
- Ensure your agent is deployed and accessible
- Register your agent with ASI:One using the provided API
- Include proper metadata and tool descriptions
# Example ASI:One registration
from asi_one_client import ASIOneClient
client = ASIOneClient(api_key="your_api_key")
client.register_agent(
agent_address="agent1qw2e3r4t5y6u7i8o9p0...",
name="Weather Agent",
description="Provides weather forecasts and alerts",
tools=["get_weather", "get_forecast", "get_alerts"]
)
Claude Desktop Configuration
To use the bridge with Claude Desktop, create a claude_config.json file:
{
"mcpServers": {
"weather": {
"command": "python3",
"args": [
"/Users/rajashekar/agents-agentverse/uagent_mcp/examples/new_proxy.py"
],
"env": {
"BRIDGE_URL": "http://localhost:8080/jsonrpc",
"MCP_TIMEOUT": "12000"
}
}
}
}
License
MIT
Quick Start
Clone the repository
git clone https://github.com/rajashekarcs2023/agentverse-mcp-integrationInstall dependencies
cd agentverse-mcp-integration
npm installFollow the documentation
Check the repository's README.md file for specific installation and usage instructions.
Repository Details
Recommended MCP Servers
Discord MCP
Enable AI assistants to seamlessly interact with Discord servers, channels, and messages.
Knit MCP
Connect AI agents to 200+ SaaS applications and automate workflows.
Apify MCP Server
Deploy and interact with Apify actors for web scraping and data extraction.
BrowserStack MCP
BrowserStack MCP Server for automated testing across multiple browsers.
Zapier MCP
A Zapier server that provides automation capabilities for various apps.