
mcp chat analysis server
基于向量嵌入和知识图谱的聊天语义分析工具,支持多种功能如语义搜索、对话模式分析等。
Repository Info
About This Server
基于向量嵌入和知识图谱的聊天语义分析工具,支持多种功能如语义搜索、对话模式分析等。
Model Context Protocol (MCP) - This server can be integrated with AI applications to provide additional context and capabilities, enabling enhanced AI interactions and functionality.
Documentation
MCP Chat Analysis Server
A Model Context Protocol (MCP) server that enables semantic analysis of chat conversations through vector embeddings and knowledge graphs. This server provides tools for analyzing chat data, performing semantic search, extracting concepts, and analyzing conversation patterns.
Key Features
- 🔍 Semantic Search: Find relevant messages and conversations using vector similarity
- 🕸️ Knowledge Graph: Navigate relationships between messages, concepts, and topics
- 📊 Conversation Analytics: Analyze patterns, metrics, and conversation dynamics
- 🔄 Flexible Import: Support for various chat export formats
- 🚀 MCP Integration: Easy integration with Claude and other MCP-compatible systems
Quick Start
# Install the package
pip install mcp-chat-analysis-server
# Set up configuration
cp config.example.yml config.yml
# Edit config.yml with your database settings
# Run the server
python -m mcp_chat_analysis.server
MCP Integration
Add to your claude_desktop_config.json:
{
"mcpServers": {
"chat-analysis": {
"command": "python",
"args": ["-m", "mcp_chat_analysis.server"],
"env": {
"QDRANT_URL": "http://localhost:6333",
"NEO4J_URL": "bolt://localhost:7687",
"NEO4J_USER": "neo4j",
"NEO4J_PASSWORD": "your-password"
}
}
}
}
Available Tools
import_conversations
Import and analyze chat conversations
{
"source_path": "/path/to/export.zip",
"format": "openai_native" # or html, markdown, json
}
semantic_search
Search conversations by semantic similarity
{
"query": "machine learning applications",
"limit": 10,
"min_score": 0.7
}
analyze_metrics
Analyze conversation metrics
{
"conversation_id": "conv-123",
"metrics": [
"message_frequency",
"response_times",
"topic_diversity"
]
}
extract_concepts
Extract and analyze concepts
{
"conversation_id": "conv-123",
"min_relevance": 0.5,
"max_concepts": 10
}
Architecture
See ARCHITECTURE.md for detailed diagrams and documentation of:
- System components and interactions
- Data flow and processing pipeline
- Storage schema and vector operations
- Tool integration mechanism
Prerequisites
- Python 3.8+
- Neo4j database for knowledge graph storage
- Qdrant vector database for semantic search
- sentence-transformers for embeddings
Installation
- Install the package:
pip install mcp-chat-analysis-server
- Set up databases:
# Using Docker (recommended)
docker compose up -d
- Configure the server:
cp .env.example .env
# Edit .env with your settings
Development
- Clone the repository:
git clone https://github.com/rebots-online/mcp-chat-analysis-server.git
cd mcp-chat-analysis-server
- Install development dependencies:
pip install -e ".[dev]"
- Run tests:
pytest tests/
Contributing
- Fork the repository
- Create a feature branch
- Submit a pull request
See CONTRIBUTING.md for guidelines.
License
MIT License - See LICENSE file for details.
Related Projects
- Model Context Protocol (MCP)
- Claude Desktop
- Qdrant Vector Database
- Neo4j Graph Database
Support
- 📖 Documentation
- 🐛 Issue Tracker
- 💬 Discussions
Quick Start
Clone the repository
git clone https://github.com/rebots-online/mcp-chat-analysis-serverInstall dependencies
cd mcp-chat-analysis-server
npm installFollow the documentation
Check the repository's README.md file for specific installation and usage instructions.
Repository Details
Recommended MCP Servers
Discord MCP
Enable AI assistants to seamlessly interact with Discord servers, channels, and messages.
Knit MCP
Connect AI agents to 200+ SaaS applications and automate workflows.
Apify MCP Server
Deploy and interact with Apify actors for web scraping and data extraction.
BrowserStack MCP
BrowserStack MCP Server for automated testing across multiple browsers.
Zapier MCP
A Zapier server that provides automation capabilities for various apps.