
MCP Serverrenky1025public
agno agents
多智能体dry run
Repository Info
0
Stars
0
Forks
0
Watchers
0
Issues
Go
Language
Apache License 2.0
License
About This Server
多智能体dry run
Model Context Protocol (MCP) - This server can be integrated with AI applications to provide additional context and capabilities, enabling enhanced AI interactions and functionality.
Documentation
多智能体框架 - AGNO
安装依赖
uv venv
# active venv
uv pip install -U agno duckduckgo-search httpx "mcp[cli]" ollama yfinance jira
创建agno agents
ollama_model = Ollama(id="qwen2.5:14b",
show_tool_calls=True,
timeout=30,
host= "http://192.168.100.80:11434")
#command = "python C:/workspaces/python-projects/agno-agents/server.py"
command = "C:/workspaces/python-projects/agno-agents/golang-mcp/main.exe"
#mcp_tools = MCPTools(server_params=server_params)
# MCP server to access the filesystem (via `npx`)
async with MCPTools(command=command) as mcp_tools:
agent = Agent(
exponential_backoff=True,
#debug_mode=True,
model=ollama_model,
name="My_Agent",
tools=[mcp_tools],
markdown=True,
show_tool_calls=True,
)
await agent.aprint_response(
## "what's the current time?",
"计算20乘以50等于多少?",
stream=True,
)
连接 MCP Server 获取mcp tools
多agent
#方式一
Agent(
name="多智能体Team",
model=ollama_model,
team=[
json_format_agent, xxxx,xxx,
],
instructions=[
"""prompt"""
],
#success_criteria="图表生成成功,有quickchart的链接.",
#enable_agentic_context=True,
show_tool_calls=True,
markdown=True,
add_context=True,
add_datetime_to_instructions=True,
add_history_to_messages=True,
num_history_responses=5,
#show_members_responses=True,
)
#方式二
Team(
name="多智能体Team",
model=ollama_model,
members=[
json_format_agent, xxxx,xxx,
],
instructions=[
"""prompt"""
],
success_criteria="图表生成成功,有quickchart的链接.",
enable_agentic_context=True,
show_tool_calls=True,
markdown=True,
add_context=True,
add_datetime_to_instructions=True,
add_history_to_messages=True,
num_history_responses=5,
show_members_responses=True,
)
# 载入多个mcp tools 目前测试只有这个方式可以工作
async with MultiMCPTools([datavcommand, pgcommand]) as mcp_tools:
# 创建MCP代理
if mcp_tools:
try:
mcp_agent = Agent(
name="MCP Tools",
model=ollama_model,
tools=[mcp_tools],
)
Get Started with Agent UI
npx create-agent-ui@latest
cd agent-ui && pnpm run dev
## 修改启动端口, package.json ==>"dev": "next dev -p 4000",
##Open http://localhost:4000 to view the Agent UI,
#main.py
app = Playground(agents=[web_agent, finance_agent, mcp_agent, jira_agent]).get_app()
# cors issue
app.add_middleware(
CORSMiddleware,
allow_origins=["http://localhost:4000"], # Add the URL of your Agent UI
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
if __name__ == "__main__":
serve_playground_app("main:app", reload=False)
test /debug mcp tools
pnpm install @modelcontextprotocol/inspector
npx @modelcontextprotocol/inspector go run main.go
Quick Start
1
Clone the repository
git clone https://github.com/renky1025/agno-agents2
Install dependencies
cd agno-agents
npm install3
Follow the documentation
Check the repository's README.md file for specific installation and usage instructions.
Repository Details
Ownerrenky1025
Repoagno-agents
LanguageGo
LicenseApache License 2.0
Last fetched8/10/2025
Recommended MCP Servers
💬
Discord MCP
Enable AI assistants to seamlessly interact with Discord servers, channels, and messages.
integrationsdiscordchat
🔗
Knit MCP
Connect AI agents to 200+ SaaS applications and automate workflows.
integrationsautomationsaas
🕷️
Apify MCP Server
Deploy and interact with Apify actors for web scraping and data extraction.
apifycrawlerdata
🌐
BrowserStack MCP
BrowserStack MCP Server for automated testing across multiple browsers.
testingqabrowsers
⚡
Zapier MCP
A Zapier server that provides automation capabilities for various apps.
zapierautomation