
pg mcp client
基于自然语言的 PostgreSQL 数据库查询客户端工具。
Repository Info
About This Server
基于自然语言的 PostgreSQL 数据库查询客户端工具。
Model Context Protocol (MCP) - This server can be integrated with AI applications to provide additional context and capabilities, enabling enhanced AI interactions and functionality.
Documentation
PG-MCP-Client
A web-based client application for the PostgreSQL Model Context Protocol (PG-MCP) server that allows users to query databases using natural language.
More info on the pg-mcp project here:
https://stuzero.github.io/pg-mcp/
Overview
PG-MCP-Client provides a user-friendly web interface for interacting with PostgreSQL databases through the PG-MCP server. It leverages AI language models to translate natural language questions into SQL queries, making database exploration accessible to users without SQL expertise.
The client connects to a PG-MCP server, which provides database schema information and query execution capabilities, while an AI provider (Anthropic, Google, or OpenAI) handles the natural language understanding and SQL generation.
Features
- Natural Language Interface: Query your PostgreSQL database using plain English
- Multiple LLM Support: Compatible with Anthropic (Claude), Google (Gemini), and OpenAI models
- Interactive UI: Clean, responsive web interface built with Tailwind CSS and HTMX
- Database Schema Exploration: Automatically retrieves and uses database schema for accurate query generation
- Query Visualization: Displays generated SQL and query results in a formatted table
- Configurable Settings: Easy configuration of API keys and connection details
Screenshot
!PG-MCP-Client Screenshot
Installation
Prerequisites
- Python 3.13+
- A running PG-MCP server
- API key from one of the supported AI providers:
- Anthropic
- Google AI (Gemini)
- OpenAI
Using Docker
# Clone the repository
git clone https://github.com/stuzero/pg-mcp-client.git
cd pg-mcp-client
# Create a .env file with your application secret
echo "APPLICATION_SECRET=your_secure_random_string" > .env
# Build and run with Docker
docker-compose up -d
Manual Installation
This project uses uv for dependency management:
uv Installation Instructions
# Clone the repository
git clone https://github.com/stuzero/pg-mcp-client.git
cd pg-mcp-client
# Install dependencies and create a virtual environment ( .venv )
uv sync
# Activate the virtual environment
source .venv/bin/activate
# Create a .env file with your application secret
echo "APPLICATION_SECRET=your_secure_random_string" > .env
# Run the application
python -m client.app
Usage
- Access the web interface at http://localhost:8080
- Navigate to the Settings page and configure:
- LLM Provider (Anthropic, Gemini, or OpenAI)
- LLM API Key
- PG-MCP Server URL (e.g., http://localhost:8000/sse)
- PostgreSQL Connection String
- Go to the Query page
- Enter your question in natural language (e.g., "Show me the top 10 customers by revenue")
- View the generated SQL and query results
Configuration
The application stores the following configuration in the user's session:
- LLM Provider: Select from Anthropic (Claude), Gemini, or OpenAI
- LLM API Key: Your API key for the selected provider
- PG-MCP Server URL: The URL of your PG-MCP server's SSE endpoint
- Database URL: PostgreSQL connection string for the target database
Architecture
PG-MCP-Client consists of:
- Web UI: Built with Starlette, Jinja2 templates, Tailwind CSS, and HTMX
- Agent Service: Connects to LLM providers and the PG-MCP server
- Query Processing:
- Fetches database schema from PG-MCP server
- Sends schema + user question to LLM for SQL generation
- Executes generated SQL via PG-MCP server
- Formats and displays results
The application flow:
User Input → Schema Retrieval → LLM Processing → SQL Generation →
Query Execution → Results Display
Related Projects
- PG-MCP Server: The server component for PostgreSQL database access
- Model Context Protocol: The underlying protocol for AI agent interactions
- PydanticAI: The Agent framework for this client
Contributing
Contributions are welcome! Areas for improvement:
- Additional LLM provider integrations
- Enhanced UI features
- Query history and management
- Improved error handling and debugging
- SQL query customization options
Quick Start
Clone the repository
git clone https://github.com/stuzero/pg-mcp-clientInstall dependencies
cd pg-mcp-client
npm installFollow the documentation
Check the repository's README.md file for specific installation and usage instructions.
Repository Details
Recommended MCP Servers
Discord MCP
Enable AI assistants to seamlessly interact with Discord servers, channels, and messages.
Knit MCP
Connect AI agents to 200+ SaaS applications and automate workflows.
Apify MCP Server
Deploy and interact with Apify actors for web scraping and data extraction.
BrowserStack MCP
BrowserStack MCP Server for automated testing across multiple browsers.
Zapier MCP
A Zapier server that provides automation capabilities for various apps.