
tadata python sdk
提供基于 OpenAPI 规范部署 Model Context Protocol (MCP) 服务器的 Python SDK。
Repository Info
About This Server
提供基于 OpenAPI 规范部署 Model Context Protocol (MCP) 服务器的 Python SDK。
Model Context Protocol (MCP) - This server can be integrated with AI applications to provide additional context and capabilities, enabling enhanced AI interactions and functionality.
Documentation
Tadata Python SDK
The Tadata Python SDK provides an easy-to-use interface for deploying Model Context Protocol (MCP) servers from OpenAPI specifications.
Installation
# With uv (recommended)
uv add tadata-sdk
# With pip
pip install tadata-sdk
Quickstart
Deploy a Model Context Protocol (MCP) server with your OpenAPI specification:
import tadata_sdk
# Deploy from a dictionary
result = tadata_sdk.deploy(
openapi_spec={
"openapi": "3.0.0",
"info": {"title": "My API", "version": "1.0.0"},
"paths": {"/hello": {"get": {"responses": {"200": {"description": "OK"}}}}},
},
api_key="TADATA_API_KEY", # Required
name="My MCP Deployment", # Optional
base_url="https://api.myservice.com", # Required if no valid and absolute base url is found in the openapi spec
)
print(f"Deployed MCP server: {result.id}")
print(f"Created at: {result.created_at}")
FastAPI Support
You can deploy FastAPI applications directly without manually extracting the OpenAPI specification:
import tadata_sdk
from fastapi import FastAPI
# Create your FastAPI app
app = FastAPI(title="My API", version="1.0.0")
@app.get("/hello")
def hello():
return {"message": "Hello World"}
# Deploy the FastAPI app directly
result = tadata_sdk.deploy(
fastapi_app=app,
api_key="TADATA_API_KEY",
base_url="https://api.myservice.com",
name="My FastAPI Deployment"
)
print(f"Deployed FastAPI app: {result.id}")
Note: FastAPI is not a required dependency. If you want to use FastAPI support, install it separately:
pip install fastapi
Django Support
You can deploy Django REST Framework applications directly using drf-spectacular:
import os
import tadata_sdk
# Set up Django environment
os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'myproject.settings')
import django
django.setup()
# Your Django settings should include:
# INSTALLED_APPS = [
# # ... your apps
# 'rest_framework',
# 'drf_spectacular',
# ]
# REST_FRAMEWORK = {
# 'DEFAULT_SCHEMA_CLASS': 'drf_spectacular.openapi.AutoSchema',
# }
# Deploy using Django schema extraction
result = tadata_sdk.deploy(
use_django=True, # Extract schema from configured Django application
api_key="TADATA_API_KEY",
base_url="https://api.myservice.com",
name="My Django Deployment"
)
print(f"Deployed Django app: {result.id}")
Note: Django, Django REST Framework, and drf-spectacular are not required dependencies. If you want to use Django support, install them separately:
pip install django djangorestframework drf-spectacular
Quick Start
Clone the repository
git clone https://github.com/tadata-org/tadata-python-sdkInstall dependencies
cd tadata-python-sdk
npm installFollow the documentation
Check the repository's README.md file for specific installation and usage instructions.
Repository Details
Recommended MCP Servers
Discord MCP
Enable AI assistants to seamlessly interact with Discord servers, channels, and messages.
Knit MCP
Connect AI agents to 200+ SaaS applications and automate workflows.
Apify MCP Server
Deploy and interact with Apify actors for web scraping and data extraction.
BrowserStack MCP
BrowserStack MCP Server for automated testing across multiple browsers.
Zapier MCP
A Zapier server that provides automation capabilities for various apps.