
weather server
A Weather MCP Server
Repository Info
About This Server
A Weather MCP Server
Model Context Protocol (MCP) - This server can be integrated with AI applications to provide additional context and capabilities, enabling enhanced AI interactions and functionality.
Documentation
Weather Server MCP
A Model Context Protocol (MCP) server that provides weather information via the OpenWeatherMap API. This project demonstrates how to create and use MCP servers to extend AI assistant capabilities with real-time weather data.
!Example
Project Overview
This project implements a local MCP server using FastMCP that allows AI assistants to access current weather conditions and forecasts for any city worldwide. The server connects to the OpenWeatherMap API and provides this data through a standardized MCP interface. !Overview
Key Features
- Current Weather: Get real-time weather data for any city
- Weather Forecasts: Get forecasts for up to 15 days in the future
- Temperature Data: Includes current, minimum, and maximum temperatures
- Multiple Transport Modes: Supports both stdio and HTTP streaming modes
- OAuth 2.0 Authentication: Secure Bearer Token authentication for HTTP modes
- Docker Support: Easy deployment with Docker and Docker Compose
- Comprehensive Error Handling: Robust error handling and logging
Project Structure
weather-server/
├── .dockerignore # Docker build exclusions
├── .env.example # Example environment variables
├── .gitignore # Git exclusions
├── README.md # This file (root documentation)
│
└── weather_mcp/ # Main MCP server implementation
├── main.py # Server entrypoint using FastMCP
├── plugins/ # MCP plugins directory
│ └── weather.py # Weather tool implementation
├── config.yaml.example # Example configuration file
├── .env.example # Example environment variables
├── requirements.txt # Python dependencies
├── Dockerfile # Docker container definition
├── docker-compose.yml # Docker Compose configuration
├── run_server.sh # Script to run the server
└── README.md # Detailed documentation for the MCP server
!Instructure
Quick Start
Prerequisites
- Python 3.8 or higher
- OpenWeatherMap API key (sign up at OpenWeatherMap)
Setup
-
Clone the repository:
git clone https://github.com/yourusername/weather-server.git cd weather-server/weather_mcp -
Install dependencies:
pip install -r requirements.txt -
Configure the server:
cp config.yaml.example config.yaml # Edit config.yaml and add your OpenWeatherMap API keyOr use environment variables:
cp .env.example .env # Edit .env and add your OpenWeatherMap API key
Running the Server
Using the provided script:
# Make the script executable
chmod +x run_server.sh
# Run in stdio mode (default)
./run_server.sh
# Run in HTTP streaming mode
./run_server.sh -m sse
# Run with authentication enabled
./run_server.sh -m sse -a -g
Using Docker:
# Using Docker Compose
docker-compose up -d
# Or build and run the Docker image directly
docker build -t weather-mcp-server .
docker run -d -p 3399:3399 -e OPENWEATHERMAP_API_KEY=your_api_key_here weather-mcp-server
Authentication
The server supports OAuth 2.0 Bearer Token authentication for HTTP streaming modes (SSE and streamable-http). This provides secure access control for your MCP server.
Enabling Authentication
Authentication can be enabled in several ways:
-
Using environment variables:
export AUTH_ENABLED=true export AUTH_SECRET_KEY=your_secret_key_here -
Using the .env file:
AUTH_ENABLED=true AUTH_SECRET_KEY=your_secret_key_here -
Using config.yaml:
auth: enabled: true secret_key: your_secret_key_here -
Using command-line options (with run_server.sh):
./run_server.sh -m sse -a -s your_secret_key_here
Generating Tokens
The project includes a token generation utility:
# Generate a token using the secret key
python weather_mcp/utils/generate_token.py --secret your_secret_key_here
# Generate a token with a specific expiration time (in seconds)
python weather_mcp/utils/generate_token.py --secret your_secret_key_here --expiry 3600
# Generate a token for a specific user
python weather_mcp/utils/generate_token.py --secret your_secret_key_here --user "user123"
You can also generate a token when starting the server:
./run_server.sh -m sse -a -g
Using Tokens with Clients
Clients must include the Bearer Token in the Authorization header:
Authorization: Bearer your_token_here
Using with AI Assistants
This MCP server can be integrated with AI assistants that support the Model Context Protocol. Once connected, the assistant can use the weather tool to get weather information.
Example Tool Usage
{
"tool": "weather.get_weather",
"args": {
"city": "London,uk",
"days": 0
}
}
Example Response
{
"city": "London,uk",
"date": "2025-05-12",
"temperature_C": 15.8,
"min_temperature_C": 12.3,
"max_temperature_C": 18.2,
"weather": "scattered clouds"
}
Transport Modes
The server supports these transport modes:
- stdio: Standard input/output mode (good for CLI usage)
- streamable-http: HTTP server mode with streaming support (default and recommended for web clients)
- sse: Legacy HTTP streaming mode (for backward compatibility)
Docker Support
The project includes Docker support for easy deployment:
- Dockerfile: Defines the container image
- docker-compose.yml: Simplifies deployment with environment variables
- .dockerignore: Optimizes Docker builds
Detailed Documentation
For more detailed information about the MCP server implementation, API details, and advanced usage, please refer to the weather_mcp/README.md file.
License
This project is licensed under the MIT License - see the LICENSE file for details.
Acknowledgments
- FastMCP - The Python framework for building MCP servers
- OpenWeatherMap - Weather data provider
Quick Start
Clone the repository
git clone https://github.com/tobecrazy/weather-serverInstall dependencies
cd weather-server
npm installFollow the documentation
Check the repository's README.md file for specific installation and usage instructions.
Repository Details
Recommended MCP Servers
Discord MCP
Enable AI assistants to seamlessly interact with Discord servers, channels, and messages.
Knit MCP
Connect AI agents to 200+ SaaS applications and automate workflows.
Apify MCP Server
Deploy and interact with Apify actors for web scraping and data extraction.
BrowserStack MCP
BrowserStack MCP Server for automated testing across multiple browsers.
Zapier MCP
A Zapier server that provides automation capabilities for various apps.