
github trend news
Random pick up a hot repo in github provide a good summary for the repo.
Repository Info
About This Server
Random pick up a hot repo in github provide a good summary for the repo.
Model Context Protocol (MCP) - This server can be integrated with AI applications to provide additional context and capabilities, enabling enhanced AI interactions and functionality.
Documentation
GitHub Trending Analyzer
Note: This repo is fully auto generated by aider with GEMINI-2.5-pro. cost USD $1.91.
This project analyzes trending GitHub repositories for a specified programming language. It fetches daily trending repositories using a Model Context Protocol (MCP) compliant server (like mcp-github-trending), randomly selects one, retrieves its README file, and uses LiteLLM to generate:
- A concise summary
- Potential use cases
- Key advantages
- A sample code snippet (if available in the README)
The analysis logic is orchestrated using LangGraph, and MCP interaction is handled via the langchain-mcp-adapters library.
Features
- Fetches trending repositories via a configured MCP server (supports
stdio,sse, etc.). Configuration loaded from a separate JSON file. - Selects a random repository from the list.
- Fetches the README content from GitHub (trying
mainandmasterbranches). - Analyzes README content using LiteLLM (configurable model).
- Outputs analysis results (summary, use cases, advantages, sample code).
- Command-line interface using Click.
- Configuration via environment variables (
.envfile) and a dedicated MCP config JSON file. - Logging level configurable via
LOG_LEVELenvironment variable. - Retry logic for GitHub README fetching.
- LangGraph agent orchestration.
- Includes Dockerfile for containerization.
- Makefile for common development tasks.
- Uses
uvfor fast package management and script execution. - Code linting and formatting with
ruff.
Prerequisites
- Python 3.11+
- uv (required for package management and running scripts)
- Docker (optional, for containerized execution)
- Access to a running MCP GitHub Trending server instance (or equivalent MCP server providing a compatible tool). Ensure the server executable is available if using
stdiotransport. - Access to an LLM API compatible with LiteLLM (e.g., OpenAI, Anthropic).
Setup
-
Clone the repository:
git clone <repository-url> cd github-trending-analyzer -
Create MCP Configuration File: Create a JSON file (e.g.,
mcp_config.json) to define your MCP server connections. Seemcp_config.example.jsonfor the structure.-
Example
mcp_config.jsonforstdiotransport:{ "github_trending": { "command": "python", "args": ["/full/path/to/your/mcp_github_trending_server.py"], "transport": "stdio" } }- Replace
/full/path/to/your/mcp_github_trending_server.pywith the actual absolute path to the server executable/script. Relative paths might work depending on the execution context, but absolute paths are safer. - The key (
"github_trending") is an internal name you choose for this configuration block.
- Replace
-
Example
mcp_config.jsonforssetransport:{ "some_other_server": { "url": "http://localhost:8001/sse", "transport": "sse" } }
-
-
Create a
.envfile: Copy the template and fill in your configuration details:cp .env.template .envEdit
.envwith your specific values:LOG_LEVEL(Optional, Default:INFO): Set the logging verbosity. Options:DEBUG,INFO,WARNING,ERROR,CRITICAL.MCP_CONFIG_FILE_PATH(Required): The absolute or relative path to the JSON file you created in the previous step (e.g.,MCP_CONFIG_FILE_PATH=./mcp_config.jsonorMCP_CONFIG_FILE_PATH=/etc/app/mcp_config.json).MCP_GITHUB_TOOL_NAME(Required): The exact name of the tool exposed by your MCP server for fetching trending repositories (e.g.,get_trending_repos). Check the MCP server's definition for the correct name.GITHUB_API_TOKEN(Optional): Your GitHub Personal Access Token for higher API rate limits when fetching READMEs.LITELLM_MODEL: The identifier of the LLM model you want to use (e.g.,gpt-4o,claude-3-opus-20240229).LITELLM_API_KEY(Optional but likely required): Your API key for the chosen LLM service.LITELLM_API_BASE(Optional): Custom base URL if using a self-hosted or proxy service.
-
Install dependencies using
uv: This command installs packages listed inpyproject.toml(includinglangchain-mcp-adapters) and creates/updates theuv.lockfile.make install # or directly: # uv pip install -r pyproject.toml # uv lock
Usage
Command Line Interface (CLI) via uv run
Ensure your configured MCP server process can be started (for stdio) or is running and accessible (for sse/http). Make sure the path in MCP_CONFIG_FILE_PATH is correct relative to where you run the command. Set LOG_LEVEL in your environment or .env file to control output verbosity.
Run the analysis directly using uv run, which executes commands within the Python environment managed by uv. You must specify the programming language.
Quick Start
Clone the repository
git clone https://github.com/wangqiang8511/github-trend-newsInstall dependencies
cd github-trend-news
npm installFollow the documentation
Check the repository's README.md file for specific installation and usage instructions.
Repository Details
Recommended MCP Servers
Discord MCP
Enable AI assistants to seamlessly interact with Discord servers, channels, and messages.
Knit MCP
Connect AI agents to 200+ SaaS applications and automate workflows.
Apify MCP Server
Deploy and interact with Apify actors for web scraping and data extraction.
BrowserStack MCP
BrowserStack MCP Server for automated testing across multiple browsers.
Zapier MCP
A Zapier server that provides automation capabilities for various apps.