
vedit mcp
A video editing MCP tool service that has implemented the basic functions among the fundamental functions.
Repository Info
About This Server
A video editing MCP tool service that has implemented the basic functions among the fundamental functions.
Model Context Protocol (MCP) - This server can be integrated with AI applications to provide additional context and capabilities, enabling enhanced AI interactions and functionality.
Documentation
Vedit-MCP
This is an MCP service for video editing, which can achieve basic editing operations with just one sentence.
English | 中文
Quick Start
1. Install Dependencies
1.1 Clone this project or directly download the zip package
1.2 Configure the Python environment
- It is recommended to use uv for installation
cd vedit-mcp
uv pip install -r requirements.txt
- Or install directly using pip
pip install -r requirements.txt
1.3 Configure ffmpeg
vedit-mcp.py relies on ffmpeg for implementation. Therefore, please configure ffmpeg.
# For Mac
brew install ffmpeg
# For Ubuntu
sudo apt update
sudo apt install ffmpeg
2. Start the Service
2.1. It is recommended to use google-adk to build your own project
- Please refer to adk-sample
Before executing this sample script
- Please ensure that the path format is at least as follows
- sample
- kb
- raw/test.mp4 // This is the original video you need to process
- adk_sample.py
- vedit_mcp.py
- Please install the following two dependencies
# # adk-sample pip install requirements
# google-adk==0.3.0
# litellm==1.67.2
- Please set the api-key and api-base
Currently, this script uses the API of the Volcano Ark Platform, and you can go there to configure it by yourself.
After obtaining the API_KEY, please configure the API_KEY as an environment variable.
export OPENAI_API_KEY="your-api-key"
- Execute the script
cd sample
python adk_sample.py
- End of execution
After this script is executed correctly and ends, a video result file will be generated in kb/result, and a log file will be generated and the result will be output.
If you need secondary development, you can choose to add vedit_mcp.py to your project for use.
2.2 Or build using cline
Firstly, please ensure that your Python environment and ffmpeg configuration are correct Configure cline_mcp_settings. json as follows
{
"mcpServers": {
"vedit-mcp": {
"command": "python",
"args": [
"vedit_mcp.py",
"--kb_dir",
"your-kb-dir-here"
]
}
}
}
2.3. Execute using the stramlit web interface
To be supplemented
3. precautions
- It is recommended to use the
thinking modelto handle this type of task. Currently, it seems that thethinking modelperforms better in handling this type of task? But no further testing has been conducted, it's just an intuitive feeling.
Quick Start
Clone the repository
git clone https://github.com/zakahan/vedit-mcpInstall dependencies
cd vedit-mcp
npm installFollow the documentation
Check the repository's README.md file for specific installation and usage instructions.
Repository Details
Recommended MCP Servers
Discord MCP
Enable AI assistants to seamlessly interact with Discord servers, channels, and messages.
Knit MCP
Connect AI agents to 200+ SaaS applications and automate workflows.
Apify MCP Server
Deploy and interact with Apify actors for web scraping and data extraction.
BrowserStack MCP
BrowserStack MCP Server for automated testing across multiple browsers.
Zapier MCP
A Zapier server that provides automation capabilities for various apps.